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Abstract and Introduction

Images, videos and other digital media provide a convenient and expressive way to
communicate through social networks. But such broadcastable and information-rich content
provides ample illicit opportunity as well. Web-prevalent image files like JPEGs can be disguised
with foreign data since they’re perceivably robust to minor pixel and metadata alterations.
Slipping a covert message into one of the billions of daily posted images may be possible, but to
what extent can steganography be systematically automated and scaled?

To explore this, we first report the distorting side effects rendered upon images uploaded
to popular social network servers, e.g. compression, resizing, format conversion, and metadata
stripping. Then, we build a convolutional neural network that learns to reverse engineer these
transformations by optimizing hidden data throughput capacity. Pre-uploaded and downloaded
image files teach the network to locate candidate pixels that are least modifiable during transit,
allowing stored hidden payloads to be reliably recalled from newly presented images. Deep
learning typically requires tons of training data to avoid overfitting. But data acquisition is trivial
using social networks’ free image hosting services, which feature bulk uploads and downloads
of thousands of images at a time per album.

We show that hidden data can be predictably transmitted through social network images
with high fidelity. Our results demonstrate that Al can hide data in plain sight, at large-scale,
beyond human visual discernment, and despite third-party manipulation. Steganalysis and other
defensive forensic countermeasures are notoriously difficult, and our exfiltration techniques
highlight the growing threat posed by automated, Al-powered red teaming.
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The Evolution of Covert Communications

Steganography has been practiced for millennia. Ancient Chinese dynastic cultures hid military
secrets as early as 525 BC by covering message-imbued silk in wax and rolling it into a ball.
German spies used photographically produced microdots to steal uranium design information,
production statistics, and building schematics during World War Il. The first documented digital
steganography occurred in 1985 when employees of a small company communicated over
restrictive channels using their newly minted personal computers.

Whether it’s intended for tactical battlefield advantage, international espionage, or advanced
persistent cyber attacks, steganography transcends due to its fundamentally covert design. Its
goals remain the same across technologies and use cases. As the processing power, network
bandwidth, storage capability, file format heterogeneity and mobility of computing devices
continue to grow, steganography will live on and continue to frustrate forensic investigators [1].

These days, social networks make for particularly attractive steganography conduits because
they:
- provide public access to massive, prioritizable lists of targets and recipients,
- are highly trafficked, making it hard to distinguish malicious signal from noise,
- include convenient broadcasting syntax mechanisms like #hashtags,
- feature both manual and programmatic search capability,
- possess an undeserved reputation for trust and safety,
- lack the precedent for security-mindful engagement that older channels like email enjoy,
- exist outside traditional perimeter and endpoint security,
- are culturally ingrained, meaning blocking employee access is often unviable,
- provide free image hosting services, and
- allow users to resize or crop uploaded photos using backend software like ImageMagick,
which makes web servers vulnerable to malicious steganographic code execution (i.e.
ImageTragick, CVE-2016-3714) [2].

What about stego-based social media attacks taking place in the wild? Evidence abounds.
Encrypted callback URLs posted to Twitter can connect to C&C servers and install malicious
GIF-embedded payloads [3]. HAMMERTOSS scanned tweets for hashtags and images, which
were subsequently decoded to execute C&C instructions [4]. A malicious plugin can similarly
search Google+ for PNG files with encrypted C&C configurations [5]. CryLocker ransomware
compiled victims’ information into fake PNGs and uploaded them to Imgur, which broadcasted
them to C&C IP addresses to alert operators of fresh infections [6].

Whitehat-inspired social stego research has also been carried out. SneakyCreeper
demonstrated that Twitter, Tumblr, and SoundCloud were susceptible to base64-encoding
messages into audio and image files [7], a proof of concept C&C trojan used a steganographic
decoder to execute code hidden within Instagram images [8], and MP3 ID3v2 metadata



manipulation was shown to circumvent media sharing services [9]. The techniques presented in
this work seek to generalize some of these previous approaches, and in the same vein, raise
awareness about steganography-based attacks on social networks.

DIY Data Exfiltration

Despite the aforementioned risks, there is a general belief that steganography doesn’t justify
defense. We analyze the nuances of uploaded image distortion across popular social networks
in order to enumerate the level of sophistication being incorporated against
steganography-based attacks.

One method is to use the designated landmarks of an image file, like its metadata and
end-of-file (EOF) markers, to deposit the payload. Metadata fields such as Exchangeable image
file (Exif), International Press Telecommunications Council (IPTC) and Extensible Metadata
Platform (XMP) formatted sectioned off text areas are usually reserved for technical information
and photo capture statistics. The EOF marker occurs after the last byte of the file and indicates
to image reading programs how much storage space to allocate in advance. Hidden data can be
appended beyond the EOF marker, since many programs may ignore anything placed
afterwards.
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Fig 1: Schematic of the workflow carried out during exploratory analysis. A Lenna cover image
file is injected with foreign data according to the techniques outlined by its corresponding
bytemap on the left. It is then 1. uploaded to a social network, 2. subsequently downloaded, and
3. programmatically compared to the pre-uploaded version to ascertain what operations are
performed on the image by each social network platform.




In terms of image pixel data, digital steganography techniques can be categorized into two
separate domains: spatial and frequency. Spatial domain steganography involves directly
manipulating pixel intensities, whereas frequency domain steganography manipulates the
orthogonal transform of the image. Generally, the spatial domain is less robust but has a higher
storage capacity than the frequency domain.

We conduct an exploratory analysis by uploading images with Least Significant Bit (LSB), Red
Green Blue-based (RGB), and Pixel Value Difference (PVD) spatial domain steganography, and
Discrete Cosine Transform (DCT) and Spread Spectrum frequency domain steganography. We
test each of these techniques across 14 different social networks: Facebook, Twitter, Instagram,
Pinterest, LinkedIn, Google+, Tumblr, Flickr, Imgur, VK, Sina Weibo, YouTube, Slack, and
Reddit.

Each network can have different fields suitable for image upload, for example on Facebook the
profile picture versus the cover photo. For all of 14 networks, we test every uploadable field
across all supported image types (eg. JPEG, PNG, BMP, GIF, etc). We also test images with
different dimensions and file sizes, and try reuploading previously uploaded images to test to
see whether social networks leave recognizable traces that would allow images to bypass
certain upload processing steps in the future. We then present a chart of commonalities and
variations in steganographic efficacy measured across the comprehensive social landscape.

We report the distortions that each social network renders on images uploaded to their servers,
including image resizing, format conversion, metadata stripping, and compression.
Compression is often leveraged in order to dynamically render large images at smaller sizes to
keep bandwidth-throttled social network users happy. It can be either lossy or lossless, where
lossy compression increases the likelihood of payload clobbering because excess image data is
not preserved.

A Chrome extension called SecretBook [10] managed to minimize payload clobbering when
images were uploaded to Facebook by reverse engineering the social network’s lossy
compression algorithm. It then applied similar processing steps to pre-compressed images prior
to Facebook upload and demonstrated robust social steganography for payloads up to 140
characters in length. For social networks that were found to compress and distort uploaded
images, we sought to develop a generalizable, data-driven way of similarly performing
steganography.

Deep Neural Networks for Social Stego

The rise of data emitted by mobile phones, social networks, 10T devices, cameras and software
logs has inspired new Al applications to information security. Such available data, together with
open source deep learning software libraries and cloud computing resources have conspired to
make Al more accessible. ConvNets are powerful algorithms that've been shown to generalize



across many computer vision tasks like object classification, facial recognition and video
analysis. They comprise multiple feedforward layers of neurons that nonlinearly extract features
from input data. Each convolutional layer has an associated parameter set and can learn filters
that activate when certain spatial locations are detected within their inputs. Its weights are
optimized through back propagation.

We build a ConvNet that learns to reverse engineer image upload manipulations by locating
optimal pixel coordinates for embedding a hidden payload. We pose the problem as a
regression task that uses a generic ConvNet architecture with several stacked layers of
convolutions fed through rectified linear units (ReLUs) and a final smooth L1 loss regression
layer. The input to the ConvNet is the set of pixels from pre-uploaded images, and the output of
the final layer is the set of candidate pixels that are the least-likely-to-be-clobbered while
transiting through the social network. In other words, the output of the ConvNet represents
spatial locations that conceal the largest hidden payloads with minimal deformation.

Deep neural networks require massive amounts of training data in order to avoid overfitting.
Luckily, in competition to expand their user bases, social networks typically provide free and
user-friendly functionality to bulk upload and download images off the shelf. The more content
shared, the greater the opportunity to profit. Furthermore, their image upload APIs tend to be
permissive in order to incentivize developers to build apps that post photos or manage photos
and albums. In many cases, this simplifies the problem of acquiring training data even further by
enabling programmatic uploads and downloads.

When fed tens of thousands of training images, the trained ConvNet can predict with high
fidelity which pixel locations are ideal for storing hidden payloads. We demonstrate how learned
locations typically correspond to the more complex and “busier” regions of an image. For
example, in a photo with horses galloping in a field, horses are better payload location targets
than the more uniform grass and sky in the background. The ConvNet is built with Google’s
TensorFlow, which is an open source software library that conveniently exposes all functions
and classes necessary for our purposes through it's API.

To evaluate the ConvNet, we consider two separate metrics: minimal visual dissimilarity
between the pre-uploaded and downloaded image in terms of peak signal to noise ratio, and
maximal payload capacity in terms of byte survivability. We show that our techniques allow for
more robust and less detectable transmission of payloads. We attribute our results to the unique
risks associated with social media and our ability to leverage statistical approaches on huge
amounts of image data.

Conclusion

Steganography is imperceptible to the naked eye by design. Our approach is robust to
aftereffects like image filters, since this information is directly available from the downloaded



images during training. However, graceful degradation can make it difficult to store syntactically
rigid payloads like source code or malware. In these cases, single-character changes can break
code compilation or obfuscate fault intolerant payloads. This is especially the case for longer
payloads because recovery rates worsen as the size of the hidden data increases.
Implementing error-correcting codes, duplicating the payload across images or fragmenting the
payload across single or separate images could help address these shortcomings.

This work joins a short but growing list of offensive techniques that automate a traditionally
manual attack workflow using Al, including micro-targeted social engineering [11], password
cracking [12] and captcha subversion [13]. Offensive Al is easier to implement than its defensive
counterparts; it can be trained using either unsupervised learning algorithms or supervised ones
with cheap-to-label data. This labeling bottleneck will create headaches for blue teamers, who
will struggle to keep with the extra money, time and effort taken to generate reliably instructive
data samples. Success rates are far more important for the blue team than they are for the red
team because of what's at stake, too. Accelerating Al accessibility will only magnify this
problem. With more frequent open-source initiatives and cheapening access to powerful
cloud-based computing resources like GPUs, the barrier to entry for applied Al will continue to
retreat.

Not all hope is lost though. After all, the best defense is a good offense. Adversarial learning
and data-driven security are poised to transform modern cyber defenses. The rise of machine
hacking will harden industry security by plugging up previously unknown holes, and the sooner
this is realized, the better.

Our approach excels because user-hungry social networks rely on freemium and ad-based
business models, which provide cloud-based services like image hosting off the shelf. It can be
extended by incorporating more advanced cryptography to turn the steganographic payload into
a cipher for better camouflage. Social media backdoors can be used to exfiltrate sensitive data
from within private networks, perform reconnaissance, distribute malware or maintain contact
with C&C infrastructures [3-6]. This work has implications for insider threats, terrorism, copyright
infringement, and corporate or nation state espionage. Finally, it underscores the problem of
social media data loss prevention. We share this automated steganography enabling tool in
order to raise awareness about cloaked data within public information streams, and more
generally to raise awareness about security risks associated with social networks.
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