
TAKING WINDOWS 10 KERNEL
EXPLOITATION TO THE NEXT
LEVEL – LEVERAING WRITE-

WHAT-WHERE VULNERABILITIES
IN CREATORS UPDATE

Whoami

• Morten Schenk
• Security Advisor, Improsec ApS
• Twitter - @blomster81
• Blog: https://improsec.com/blog/
• GitHub: https://github.com/MortenSchenk
• What to expect from this talk

• Windows 10 Kernel Exploitation on Creators Update
• Lots of hex, C and memes
• 0-days!

https://improsec.com/blog/
https://github.com/MortenSchenk

Agenda

• Brief look at Kernel Exploitation history
• New Windows 10 Mitigations
• Arbitrary Kernel Read/Write Primitive
• KASLR information leak
• De-randomizing Page Table Entries
• Dynamic Function Location
• Executable Kernel Memory Allocation

Exploitation Concept

• Write-What-Where
• Vulnerability class

• Best case
• Write controlled value at controlled address

• Common case
• Write not controlled value at controlled address

• Leverage to obtain kernel-mode code execution

Brief Look at Kernel Exploitation History
Windows 7

• Kernel information leaks were available with NtQuerySystemInformation

Brief Look at Kernel Exploitation History
Windows 7

• Executable NonPagedPool was the default

• Execute User-mode memory from Kernel-mode
• Window Function running in kernel mode

• Overwrite HalDispatchTable function table with user-mode address

Brief Look at Kernel Exploitation History
Windows 8.1 and Windows 10

• Windows 8.1 and Windows 10 before Anniversary Edition.
• Kernel information leaks with APIs blocked from Low Integrity.
• NonPagedPoolNx is the new standard.
• Supervisor Mode Execution Prevention is introduced.
• Kernel-mode read / write primitive is needed.

• GDI bitmap primitive.
• tagWND primitive.

Brief Look at Kernel Exploitation History
Windows 8.1 and Windows 10

• Information leak of Bitmap through GdiSharedHandleTable

• Overwrite size of Bitmap using Write-What-Where
• Consecutive Bitmaps can create a primitive

• SetBitmapBits
• GetBitmapBits

Brief Look at Kernel Exploitation History
Windows 8.1 and Windows 10

• Information leak of User-mode mapped Desktop Heap through
• ulClientDelta from Win32ClientInfo
• UserHandleTable from User32!gSharedInfo

• Overwrite cbWndExtra using Write-What-Where
• Consecutive Windows can create a primitive

• SetWindowLongPtr overwrites adjacent
tagWND.StrName pointer through ExtraBytes

• InternalGetWindowText
• NtUserDefSetText.

Brief Look at Kernel Exploitation History
Windows 8.1 and Windows 10

• Page Table Entry overwrite is common vector

Brief Look at Kernel Exploitation History
Windows 8.1 and Windows 10

• Windows HAL Heap was in many cases static at 0xFFFFFFFFFD00000
• Offset 0x448 contained a pointer to

ntoskrnl.exe
• Use kernel-mode read/write

primitive to get base address.

Windows 10 Version Naming Conventions

Public Name Version Microsoft Internal Name OS Build
Release To Market 1507 Thredshold 1 10240

November Update 1511 Thredshold 2 10586

Anniversary Update 1607 Redstone 1 14393

Creators Update 1703 Redstone 2 15063

Fall Creators Update 1709? Redstone 3 N/A

Windows 10 Anniversary Update Mitigations

• Randomizes Page Table Entries
• Removes kernel addresses from

GdiSharedHandleTable
• Breaks bitmap primitive address

leak

Windows 10 Anniversary Update Mitigations

• Limits the tagWND.strName to point inside Desktop heap.
• Breaks tagWND primitive

Locating Bitmap Object

• Bitmap objects are stored in the Large Paged Pool.
• Randomized on reboot
• Need a kernel information leak to locate

• Win32ThreadInfo in the TEB is close to the Large Paged Pool

Locating Bitmap Object

• Creating a number of large Bitmap objects stabilizes the Pool
• Large static offset will point into

Bitmaps

Locating Bitmap Object

• Delete the second large Bitmap object.
• Allocate ~10000 new Bitmap objects of 0x1000 bytes each.
• Will point to start of Bitmap object.

Locating Bitmap Object

• Overwrite size of leaked Bitmap
• Uses two consecutive Bitmaps

•
Write-Where-Where
simulation

tagWND Read/Write outside Desktop Heap

• Pointer verification is performed by DesktopVerifyHeapPointer.
• tagWND.strName must be

within the Desktop Heap

tagWND Read/Write outside Desktop Heap

• Desktop Heap address and size comes from tagDESKTOP object.
• No validation on tagDESKTOP pointer.
• Pointer is taken from header of tagWND.

• Find tagDESKTOP pointer and replace it.
• Control Desktop Heap address and size

during verification.

tagWND Read/Write outside Desktop Heap

• SetWindowLongPtr can overwrite
tagDESKTOP pointer.

• Verification succeeds everywhere.

Write-What-Where
simulation

Windows 10 Creators Update Mitigations

• UserHandleTable from User32!gSharedInfo is gone
• UserHandleTable contains Kernel-mode address of tagWND
• Windows 10 1607

• Windows 10 1703

Windows 10 Creators Update Mitigations

• ulClientDelta from Win32ClientInfo is gone
• Windows 10 1607

• Windows 10 1703

Windows 10 Creators Update Mitigations

• ExtraBytes modified by SetWindowLongPtr are moved to user-mode.
• Cannot overwrite adjacent tagWND.strName.

Windows 10 Creators Update Mitigations

• tagWND as Kernel-mode read/write primitive is broken again.
• Bitmap object header increased by 0x8 bytes.

• Change allocation size to retain allocation alignment.

• HAL Heap is randomized.
• No longer ntoskrnl.exe pointer at 0xFFFFFFFFFD00448.

tagWND Primitive Revival

• ulClientDelta in Win32ClientInfo has been replaced by user-mode
pointer

• Inspecting new pointer reveals user-mode mapped Desktop Heap

tagWND Primitive Revival

• Manually search through Desktop heap to locate tagWND object

tagWND Primitive Revival

• Size of ExtraBytes is defined by cbWndExtra when Windows Class is
registered

• RegisterClassEx creates a tagCLS object
• tagCLS has ExtraBytes defined by

cbClsExtra
• SetWindowLongPtr sets ExtraBytes in

tagWND
• SetClassLongPtr sets ExtraBytes in tagCLS

tagWND Primitive Revival

• ExtraBytes from tagCLS are still in
the kernel

• Allocate tagCLS followed by tagWND.
• Use SetClassLongPtr to update

tagWND.strName
• Read/write kernel-mode primitive

is back

Kernel ASLR Bypass

• Almost all kernel memory is randomized.
• Shared System Page – KUSER_SHARED_DATA is static

• Located at 0xFFFFF78000000000.
• Not executable.
• Does not contain interesting pointers.

• HAL Heap is randomized
• SIDT is mitigated
• Need new ntoskrnl.exe information leak

Kernel ASLR Bypass

• KASLR bypass could be primitive related.
• Must work for Windows 8.1 and Windows 10 1507 to 1703.
• Need a bypass for each primitive.
• Must leak ntoskrnl.exe pointer.

Bitmap KASLR Bypass 0-Day

• Surface structure from REACTOS

Bitmap KASLR Bypass 0-Day

• PDEVOBJ structure from REACTOS

Function Pointer

Bitmap KASLR Bypass 0-Day

Bitmap hdev field is empty

Bitmap KASLR Bypass 0-Day

• Other Bitmap variants exist.

Bitmap KASLR Bypass 0-Day

• Free a Bitmap at offset 0x3000 from first Bitmap
• Spray CompatibleBitmaps to reallocate

Bitmap KASLR Bypass 0-Day

• Read cdd!DrvSyncronizeSurface pointer
• Find ntoskrnl.exe pointer

tagWND KASLR Bypass 0-Day

• tagWND structure from REACTOS

tagWND KASLR Bypass 0-Day

• Offset 0x2A8 of KTHREAD has ntoskrnl.exe pointer

Bonus KASLR Bypass 0-Days

• There are even more KASLR bypass possibilities

Bonus KASLR Bypass 0-Days

• Also kernel pool leak for Bitmap primitive
• Only works on Windows 10 1703

Bonus KASLR Bypass 0-Days

• ThreadLocalStoragePointer helps leak kernel pool
• Works on Windows 10 1607, but removed in 1703 /

Bonus KASLR Bypass 0-Days

• Instead of using a tagWND we can leak ntoskrnl.exe directly from
gSharedInfo

• Works on Windows 10 1607, but not in 1703 /

Page Table Entry Overwrite

• Page Table Entries had static base address of 0xFFFFF68000000000
• Self-mapping references

De-randomizing Page Table Entries

• The kernel must lookup PTE’s often
• Must have API which works despite randomization

• MiGetPteAddress in ntoskrnl.exe
• Static disassembly uses old base address
• Dynamic disassembly uses randomized base address

De-randomizing Page Table Entries

• MiGetPteAddress contains
the randomized base address

• Locate MiGetPteAddress
dynamically using read primitive

De-randomizing Page Table Entries

• Locate hash value of MiGetPteAddress
• Leak PTE base address

De-randomizing Page Table Entries

• Write shellcode to KUSER_SHARED_DATA + 0x800
• Flip the NX bit of the page

• Call shellcode by overwriting HalDispatchTable and calling
NtQueryIntervalProfile

Dynamic Kernel Memory

• ExAllocatePoolWithTag allocates kernel pool memory

• Allocate NonPagedPoolExecute
pool memory

• Return pool memory
address

Dynamic Kernel Memory

• Need controlled arguments to call ExAllocatePoolWithTag
• NtQueryIntervalProfile takes two arguments

• Must have specific values to trigger HaliQuerySystemInformation

• Need a different system call

Dynamic Kernel Memory

• Enter NtGdiDdDDICreateAllocation

• Thin trampoline around NtGdiDdDDICreateAllocation

Dynamic Kernel Memory

• Win32kbase!gDxgkInterface is function table into dxgkrnl.sys

• Arguments are not modified from system call to function table call

Dynamic Kernel Memory

• Inspecting win32kbase!gDxgkInterface shows it to be writable

Dynamic Kernel Memory

• Need to dynamically locate win32kbase!gDxgkInterface
• Can be found in win32kfull!DrvOcclusionStateChangeNotify

• Need to leak win32kfull.sys

Dynamic Kernel Memory

• PsLoadedModuleList is doubly-linked list of
_LDR_DATA_TABLE_ENTRY structures.

• Search for Win32kful in Unicode at offset 0x60

Dynamic Kernel Memory

• Leak PsLoadedModuleList from KeCapturePersistentThreadState

• Get Win32kfull.sys base address
• Find win32kfull!DrvOcclusionStateChangeNotify
• Finally locate win32kbase!gDxgkInterface

Dynamic Kernel Memory

• Overwrite win32kbase!gDxgkInterface + 0x68 with
nt!ExAllocatePoolWithTag

• Copy shellcode to allocated page
• Execute it by overwriting win32kbase!gDxgkInterface again

Summary

• Kernel read/write primitives can still be leveraged with Write-What-
Where vulnerabilities

• Page Table randomization can be bypassed with ntoskrnl.exe
information leak

• Device Independent Bitmap can be used to leak ntoskrnl.exe
• tagWND can be used to leak ntoskrnl.exe
• Possible to allocate RWX pool memory with ExAllocatePoolWithTag
• Code on GitHub shortly - https://github.com/MortenSchenk

https://github.com/MortenSchenk

Credits

• Alex Ionescu - https://recon.cx/2013/slides/Recon2013-Alex%20Ionescu-
I%20got%2099%20problems%20but%20a%20kernel%20pointer%20ain%27
t%20one.pdf

• Alex Ionescu - http://www.alex-ionescu.com/?p=231
• Diego Juarez - https://www.coresecurity.com/blog/abusing-gdi-for-ring0-

exploit-primitives
• Yin Liang & Zhou Li - https://www.blackhat.com/docs/eu-16/materials/eu-

16-Liang-Attacking-Windows-By-Windows.pdf
• Nicolas Economou - https://www.coresecurity.com/blog/getting-physical-

extreme-abuse-of-intel-based-paging-systems-part-3-windows-hals-heap
• David Weston & Matt Miller - https://www.blackhat.com/docs/us-

16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf

http://www.alex-ionescu.com/?p=231
https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives
https://www.blackhat.com/docs/eu-16/materials/eu-16-Liang-Attacking-Windows-By-Windows.pdf
https://www.coresecurity.com/blog/getting-physical-extreme-abuse-of-intel-based-paging-systems-part-3-windows-hals-heap
https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf

