
Porosity
Decompiling Ethereum Smart-Contracts

Matt Suiche (@msuiche)
Founder, Comae Technologies

m@comae.io

mailto:m@comae.io

Whoami
� @msuiche
� Comae Technologies
� OPCDE - www.opcde.com
� First time in Vegas since BlackHat 2011
� Mainly Windows-related stuff

� CloudVolumes (VMware App Volumes)
� Memory Forensics for DFIR (Hibr2Bin, DumpIt etc.)

� “looks like such fun guy” – TheShadowBrokers

� Didn’t know much about blockchain before this project

Just so you know…
� We won’t talk about POW/POS stuff
� We won’t talk about Merkle Trees
� We won’t talk about how to becoming a crypto-currency millionaire

� We will talk about the Ethereum EVM
� We will talk about Solidity
� We will talk about smart-contract bytecodes

� And yes, the tool isn’t perfect ☺

Agenda
� Ethereum Virtual Machine (EVM)
� Memory Management
� Addresses
� Call Types
� Type Discovery
� Smart-Contract
� Code Analysis
� Known Bugs
� Future

Solidity

� Solidity the quality or state of being firm or strong in
structure.

� But also the name of Ethereum’s smart-contracts compiler

� Porosity is the quality of being porous, or full of tiny holes.
Liquids go right through things that have porosity.

� But also the name of Comae’s smart-contract decompiler.

Ethereum Virtual Machine (EVM)
� Account/Contract/Blockchain
� A Smart-Contract is made of bytecode stored in the blockchain.
� An address is a 160-bits value & corresponds to an “account”
� Operates 256-bits pseudo-registers

� EVM does not really have registers, but uses a virtual stack to replace them.

Solidity & “Smart Contracts”
� Solidity compiles JavaScript-like code into Ethereum bytecode.

contract Coin {
// The keyword "public" makes those variables
// readable from outside.
address public minter;
mapping (address => uint) public balances;

// Events allow light clients to react on
// changes efficiently.
event Sent(address from, address to, uint amount);

// This is the constructor whose code is
// run only when the contract is created.
function Coin() {

minter = msg.sender;
}

function mint(address receiver, uint amount) {
if (msg.sender != minter) return;
balances[receiver] += amount;

}

function send(address receiver, uint amount) {
if (balances[msg.sender] < amount) return;
balances[msg.sender] -= amount;
balances[receiver] += amount;
Sent(msg.sender, receiver, amount);

}
}

Memory Management
� Stack

� Virtual stack is being used for operations to pass parameters to opcodes.
� 256-bit values/entries
� Maximum size of 1024 elements

� Storage (Persistent)
� Key-value storage mapping (256-to-256-bit integers)
� Can’t be enumerated.
� SSTORE/SLOAD

� Memory (Volatile)
� 256-bit values (lots of AND operations, useful for type discovery)
� MSTORE/MLOAD

Basic Blocks
� Usually start with the JUMPDEST instruction – except few cases.
� JUMP* instruction jump to the address contained in the 1st element

of the stack.
� JUMP* instruction are (almost always) preceded by PUSH instruction

� This allows to push the destination address in the stack, instead of
hardcoding the destination offset.

� SWAP/DUP/POP stack manipulation instructions can make jump
destination address harder to retrieve

� This requires dynamic analysis to rebuild the relationship between each
basic block.

EVM functions/instructions

� EVM instructions are more like functions, such as:
� Arithmetic, Comparison & Bitwise Logic Operations
� SHA3
� Environmental & Block Information
� Stack, Memory, Storage and Flow Operations
� Logging & System Operations

Instruction call - Addition

� The above translates at the EVM-pseudo code:
� add(0x2, 0x1)

Offset Instruction Stack[0] Stack[2]
n PUSH1 0x1 0x1
n + 1 PUSH1 0x2 0x2 0x1
n + 2 ADD 0x3

EVM Call

� Can be identified by the CALL instruction.
� Call external accounts/contracts pointed by the second

parameter
� The second parameter contains the actual 160 address of the

external contract
� With the exception of 4 hardcoded contracts:

� 1 – elliptic curve public key recovery function
� 2- SHA2 function
� 3- RIPEMD160 function
� 4- Identity function

call(
gasLimit,
to,
value,
inputOffset,
inputSize,
outputOffset,
outputSize
)

User-Defined functions (Solidity)
� CALLDATALOAD instruction is used to read the Environmental

Information Block (EIB) such as parameters.
� First 4 bytes of the EIB contains the 32-bits hash of the called

function.
� Followed by the parameters based on their respective types.

� e.g. int would be a 256 bits word.

� a = calldataload(0x4)

� b = calldataload(0x24)

� add(calldataload(0x4), calldataload(0x24)

function foo(int a, int b) {
return a + b;
}

Type Discovery - Addresses
� As an example, addresses are 160-bit words
� Since stack registers are 256-bit words, they can easily be identified

through AND operations using the
0xff mask.

� Mask can be static or computed dynamically
Ethereum Assembly Translation (msg.sender)
CALLER
PUSH1 0x01
PUSH 0xA0
PUSH1 0x02
EXP
SUB
AND

and(reg256, sub(exp(2, 0xa0), 1)) (EVM)

reg256 & (2 ** 0xA0) - 1) (Intermediate)

address (Solidity)

Bytecode

� The bytecode is divided in two categories:
� Pre-loader code

� Found at the beginning that contains the routine to bootstrap
the contract

� Runtime code of the contract
� The core code written by the user that got compiled by

Solidity
� Each contract contain a dispatch function that redirects the

call to the corresponding function based on the provided
hash function.

Bytecode – Pre-loader
� CODECOPY copies the runtime part of the contract into the EVM

memory – which gets executed at base address 0x0
00000000 6060
00000002 6040
00000004 52
00000005 6000
00000007 6001
00000009 6000
0000000b 610001
0000000e 0a
0000000f 81
00000010 54
00000011 81
00000012 60ff
00000014 02
00000015 19

00000016 16
00000017 90
00000018 83
00000019 02
0000001a 17
0000001b 90
0000001c 55
0000001d 50
0000001e 61bb01
00000021 80
00000022 612b00
00000025 6000
00000027 39
00000028 6000
0000002a f3

PUSH1 60
PUSH1 40
MSTORE
PUSH1 00
PUSH1 01
PUSH1 00
PUSH2 0001
EXP
DUP2
SLOAD
DUP2
PUSH1 ff
MUL
NOT

AND
SWAP1
DUP4
MUL
OR
SWAP1
SSTORE
POP
PUSH2 bb01
DUP1
PUSH2 2b00
PUSH1 00
CODECOPY
PUSH1 00
RETURN

Bytecode – Dispatcher (--list)
loc_00000000:
0x00000000 60 60 PUSH1 60
0x00000002 60 40 PUSH1 40
0x00000004 52 MSTORE
0x00000005 60 e0 PUSH1 e0
0x00000007 60 02 PUSH1 02
0x00000009 0a EXP
0x0000000a 60 00 PUSH1 00
0x0000000c 35 CALLDATALOAD
0x0000000d 04 DIV
0x0000000e 63 06 72 e9 ee PUSH4 06 72 e9 ee
0x00000013 81 DUP2
0x00000014 14 EQ
0x00000015 60 24 PUSH1 24
0x00000017 57 JUMPI

loc_00000018:
0x00000018 80 DUP1
0x00000019 63 9d 04 0a f4 PUSH4 9d 04 0a f4
0x0000001e 14 EQ
0x0000001f 60 35 PUSH1 35
0x00000021 57 JUMPI

loc_00000022:
0x00000022 5b JUMPDEST
0x00000023 00 STOP

double(uint256):
0x00000024 5b JUMPDEST
0x00000025 60 45 PUSH1 45
0x00000027 60 04 PUSH1 04
0x00000029 35 CALLDATALOAD
0x0000002a 60 00 PUSH1 00
0x0000002c 60 4f PUSH1 4f
0x0000002e 82 DUP3
0x0000002f 60 02 PUSH1 02

loc_00000031:
0x00000031 5b JUMPDEST
0x00000032 02 MUL
0x00000033 90 SWAP1
0x00000034 56 JUMP

triple(uint256):
0x00000035 5b JUMPDEST
0x00000036 60 45 PUSH1 45
0x00000038 60 04 PUSH1 04
0x0000003a 35 CALLDATALOAD
0x0000003b 60 00 PUSH1 00
0x0000003d 60 4f PUSH1 4f
0x0000003f 82 DUP3
0x00000040 60 03 PUSH1 03
0x00000042 60 31 PUSH1 31
0x00000044 56 JUMP

calldataload(0x0) / exp(0x2, 0xe0)

Function Hashes
� The 4 bytes of the sha3 (keccak256) value for the string
functionName(param1Type, param2Type, etc)

[
{

"constant":false,
"inputs":[{ "name":"a", "type":"uint256" }],
"name":"double",
"outputs":[{ "name":"", "type":"uint256" }],
"type":"function"

}
]

keccak256("double(uint256)") =>
eee972066698d890c32fec0edb38a360c32b71d0a29ffc75b6ab6d2774ec9901

double(uint256) -> 0xeee97206
triple(uint256) -> 0xf40a049d

Extracting function hash
� calldataload(0x0) / exp(0x2, 0xe0)
� (0x12345678xxxx / 0x00000001xxxx) = 0x12345678

� jumpi(eq(calldataload(0x0) / exp(0x2, 0xe0), 0xeee97206))

PS C:\Program Files\Geth> .\evm.exe \
--code 60e060020a60003504 \
--debug \
--input 12345678aaaaaaaabbbbbbbbccccccccdddddddd
PC 00000009: STOP GAS: 9999999923 COST: 0
STACK = 1
0000: 0012345678
MEM = 0
STORAGE = 0

Ethereum Emulator

Static CFG (--cfg) Emulated CFG (--cfg-full)

Control Flow Graph

Dispatcher – pseudo code
hash = calldataload(0x0) / exp(0x2, 0xe0);
switch (hash) {

case 0xeee97206: // double(uint256)
memory[0x60] = calldataload(0x4) * 2;
return memory[0x60];

break;
case 0xf40a049d: // triple(uint256)

memory[0x60] = calldataload(0x4) * 3;
return memory[0x60];

break;
default:
// STOP
break;

}

contract C {
function double(int arg_4) {

return arg_4 * 2;
}

function triple(int arg_4) {
return arg_4 * 3;

}
}

Pseudo-Code

Translated Code

Bytecode – Dispatcher (--list)
loc_00000000:
0x00000000 60 60 PUSH1 60
0x00000002 60 40 PUSH1 40
0x00000004 52 MSTORE
0x00000005 60 e0 PUSH1 e0
0x00000007 60 02 PUSH1 02
0x00000009 0a EXP
0x0000000a 60 00 PUSH1 00
0x0000000c 35 CALLDATALOAD
0x0000000d 04 DIV
0x0000000e 63 06 72 e9 ee PUSH4 06 72 e9 ee
0x00000013 81 DUP2
0x00000014 14 EQ
0x00000015 60 24 PUSH1 24
0x00000017 57 JUMPI

loc_00000018:
0x00000018 80 DUP1
0x00000019 63 9d 04 0a f4 PUSH4 9d 04 0a f4
0x0000001e 14 EQ
0x0000001f 60 35 PUSH1 35
0x00000021 57 JUMPI

loc_00000022:
0x00000022 5b JUMPDEST
0x00000023 00 STOP

double(uint256):
0x00000024 5b JUMPDEST
0x00000025 60 45 PUSH1 45
0x00000027 60 04 PUSH1 04
0x00000029 35 CALLDATALOAD
0x0000002a 60 00 PUSH1 00
0x0000002c 60 4f PUSH1 4f
0x0000002e 82 DUP3
0x0000002f 60 02 PUSH1 02

loc_00000031:
0x00000031 5b JUMPDEST
0x00000032 02 MUL
0x00000033 90 SWAP1
0x00000034 56 JUMP

triple(uint256):
0x00000035 5b JUMPDEST
0x00000036 60 45 PUSH1 45
0x00000038 60 04 PUSH1 04
0x0000003a 35 CALLDATALOAD
0x0000003b 60 00 PUSH1 00
0x0000003d 60 4f PUSH1 4f
0x0000003f 82 DUP3
0x00000040 60 03 PUSH1 03
0x00000042 60 31 PUSH1 31
0x00000044 56 JUMP

Bytecode – Dispatcher (--list)
loc_00000000:
0x00000000 60 60 PUSH1 60
0x00000002 60 40 PUSH1 40
0x00000004 52 MSTORE
0x00000005 60 e0 PUSH1 e0
0x00000007 60 02 PUSH1 02
0x00000009 0a EXP
0x0000000a 60 00 PUSH1 00
0x0000000c 35 CALLDATALOAD
0x0000000d 04 DIV
0x0000000e 63 06 72 e9 ee PUSH4 06 72 e9 ee
0x00000013 81 DUP2
0x00000014 14 EQ
0x00000015 60 24 PUSH1 24
0x00000017 57 JUMPI

loc_00000018:
0x00000018 80 DUP1
0x00000019 63 9d 04 0a f4 PUSH4 9d 04 0a f4
0x0000001e 14 EQ
0x0000001f 60 35 PUSH1 35
0x00000021 57 JUMPI

loc_00000022:
0x00000022 5b JUMPDEST
0x00000023 00 STOP

double(uint256):
0x00000024 5b JUMPDEST
0x00000025 60 45 PUSH1 45
0x00000027 60 04 PUSH1 04
0x00000029 35 CALLDATALOAD
0x0000002a 60 00 PUSH1 00
0x0000002c 60 4f PUSH1 4f
0x0000002e 82 DUP3
0x0000002f 60 02 PUSH1 02

loc_00000031:
0x00000031 5b JUMPDEST
0x00000032 02 MUL
0x00000033 90 SWAP1
0x00000034 56 JUMP

triple(uint256):
0x00000035 5b JUMPDEST
0x00000036 60 45 PUSH1 45
0x00000038 60 04 PUSH1 04
0x0000003a 35 CALLDATALOAD
0x0000003b 60 00 PUSH1 00
0x0000003d 60 4f PUSH1 4f
0x0000003f 82 DUP3
0x00000040 60 03 PUSH1 03
0x00000042 60 31 PUSH1 31
0x00000044 56 JUMP

Bytecode – Dispatcher (--list)
loc_00000000:
0x00000000 60 60 PUSH1 60
0x00000002 60 40 PUSH1 40
0x00000004 52 MSTORE
0x00000005 60 e0 PUSH1 e0
0x00000007 60 02 PUSH1 02
0x00000009 0a EXP
0x0000000a 60 00 PUSH1 00
0x0000000c 35 CALLDATALOAD
0x0000000d 04 DIV
0x0000000e 63 06 72 e9 ee PUSH4 06 72 e9 ee
0x00000013 81 DUP2
0x00000014 14 EQ
0x00000015 60 24 PUSH1 24
0x00000017 57 JUMPI

loc_00000018:
0x00000018 80 DUP1
0x00000019 63 9d 04 0a f4 PUSH4 9d 04 0a f4
0x0000001e 14 EQ
0x0000001f 60 35 PUSH1 35
0x00000021 57 JUMPI

loc_00000022:
0x00000022 5b JUMPDEST
0x00000023 00 STOP

double(uint256):
0x00000024 5b JUMPDEST
0x00000025 60 45 PUSH1 45
0x00000027 60 04 PUSH1 04
0x00000029 35 CALLDATALOAD
0x0000002a 60 00 PUSH1 00
0x0000002c 60 4f PUSH1 4f
0x0000002e 82 DUP3
0x0000002f 60 02 PUSH1 02

loc_00000031:
0x00000031 5b JUMPDEST
0x00000032 02 MUL
0x00000033 90 SWAP1
0x00000034 56 JUMP

triple(uint256):
0x00000035 5b JUMPDEST
0x00000036 60 45 PUSH1 45
0x00000038 60 04 PUSH1 04
0x0000003a 35 CALLDATALOAD
0x0000003b 60 00 PUSH1 00
0x0000003d 60 4f PUSH1 4f
0x0000003f 82 DUP3
0x00000040 60 03 PUSH1 03
0x00000042 60 31 PUSH1 31
0x00000044 56 JUMP

Bytecode – Dispatcher (--list)
loc_00000000:
0x00000000 60 60 PUSH1 60
0x00000002 60 40 PUSH1 40
0x00000004 52 MSTORE
0x00000005 60 e0 PUSH1 e0
0x00000007 60 02 PUSH1 02
0x00000009 0a EXP
0x0000000a 60 00 PUSH1 00
0x0000000c 35 CALLDATALOAD
0x0000000d 04 DIV
0x0000000e 63 06 72 e9 ee PUSH4 06 72 e9 ee
0x00000013 81 DUP2
0x00000014 14 EQ
0x00000015 60 24 PUSH1 24
0x00000017 57 JUMPI

loc_00000018:
0x00000018 80 DUP1
0x00000019 63 9d 04 0a f4 PUSH4 9d 04 0a f4
0x0000001e 14 EQ
0x0000001f 60 35 PUSH1 35
0x00000021 57 JUMPI

loc_00000022:
0x00000022 5b JUMPDEST
0x00000023 00 STOP

double(uint256):
0x00000024 5b JUMPDEST
0x00000025 60 45 PUSH1 45
0x00000027 60 04 PUSH1 04
0x00000029 35 CALLDATALOAD
0x0000002a 60 00 PUSH1 00
0x0000002c 60 4f PUSH1 4f
0x0000002e 82 DUP3
0x0000002f 60 02 PUSH1 02

loc_00000031:
0x00000031 5b JUMPDEST
0x00000032 02 MUL
0x00000033 90 SWAP1
0x00000034 56 JUMP

triple(uint256):
0x00000035 5b JUMPDEST
0x00000036 60 45 PUSH1 45
0x00000038 60 04 PUSH1 04
0x0000003a 35 CALLDATALOAD
0x0000003b 60 00 PUSH1 00
0x0000003d 60 4f PUSH1 4f
0x0000003f 82 DUP3
0x00000040 60 03 PUSH1 03
0x00000042 60 31 PUSH1 31
0x00000044 56 JUMP

Bytecode – Dispatcher (--list)
loc_00000000:
0x00000000 60 60 PUSH1 60
0x00000002 60 40 PUSH1 40
0x00000004 52 MSTORE
0x00000005 60 e0 PUSH1 e0
0x00000007 60 02 PUSH1 02
0x00000009 0a EXP
0x0000000a 60 00 PUSH1 00
0x0000000c 35 CALLDATALOAD
0x0000000d 04 DIV
0x0000000e 63 06 72 e9 ee PUSH4 06 72 e9 ee
0x00000013 81 DUP2
0x00000014 14 EQ
0x00000015 60 24 PUSH1 24
0x00000017 57 JUMPI

loc_00000018:
0x00000018 80 DUP1
0x00000019 63 9d 04 0a f4 PUSH4 9d 04 0a f4
0x0000001e 14 EQ
0x0000001f 60 35 PUSH1 35
0x00000021 57 JUMPI

loc_00000022:
0x00000022 5b JUMPDEST
0x00000023 00 STOP

double(uint256):
0x00000024 5b JUMPDEST
0x00000025 60 45 PUSH1 45
0x00000027 60 04 PUSH1 04
0x00000029 35 CALLDATALOAD
0x0000002a 60 00 PUSH1 00
0x0000002c 60 4f PUSH1 4f
0x0000002e 82 DUP3
0x0000002f 60 02 PUSH1 02

loc_00000031:
0x00000031 5b JUMPDEST
0x00000032 02 MUL
0x00000033 90 SWAP1
0x00000034 56 JUMP

triple(uint256):
0x00000035 5b JUMPDEST
0x00000036 60 45 PUSH1 45
0x00000038 60 04 PUSH1 04
0x0000003a 35 CALLDATALOAD
0x0000003b 60 00 PUSH1 00
0x0000003d 60 4f PUSH1 4f
0x0000003f 82 DUP3
0x00000040 60 03 PUSH1 03
0x00000042 60 31 PUSH1 31
0x00000044 56 JUMP

Bytecode – Dispatcher (--list)
loc_00000000:
0x00000000 60 60 PUSH1 60
0x00000002 60 40 PUSH1 40
0x00000004 52 MSTORE
0x00000005 60 e0 PUSH1 e0
0x00000007 60 02 PUSH1 02
0x00000009 0a EXP
0x0000000a 60 00 PUSH1 00
0x0000000c 35 CALLDATALOAD
0x0000000d 04 DIV
0x0000000e 63 06 72 e9 ee PUSH4 06 72 e9 ee
0x00000013 81 DUP2
0x00000014 14 EQ
0x00000015 60 24 PUSH1 24
0x00000017 57 JUMPI

loc_00000018:
0x00000018 80 DUP1
0x00000019 63 9d 04 0a f4 PUSH4 9d 04 0a f4
0x0000001e 14 EQ
0x0000001f 60 35 PUSH1 35
0x00000021 57 JUMPI

loc_00000022:
0x00000022 5b JUMPDEST
0x00000023 00 STOP

double(uint256):
0x00000024 5b JUMPDEST
0x00000025 60 45 PUSH1 45
0x00000027 60 04 PUSH1 04
0x00000029 35 CALLDATALOAD
0x0000002a 60 00 PUSH1 00
0x0000002c 60 4f PUSH1 4f
0x0000002e 82 DUP3
0x0000002f 60 02 PUSH1 02

loc_00000031:
0x00000031 5b JUMPDEST
0x00000032 02 MUL
0x00000033 90 SWAP1
0x00000034 56 JUMP

triple(uint256):
0x00000035 5b JUMPDEST
0x00000036 60 45 PUSH1 45
0x00000038 60 04 PUSH1 04
0x0000003a 35 CALLDATALOAD
0x0000003b 60 00 PUSH1 00
0x0000003d 60 4f PUSH1 4f
0x0000003f 82 DUP3
0x00000040 60 03 PUSH1 03
0x00000042 60 31 PUSH1 31
0x00000044 56 JUMP

Bytecode – Dispatcher (--list)
loc_00000000:
0x00000000 60 60 PUSH1 60
0x00000002 60 40 PUSH1 40
0x00000004 52 MSTORE
0x00000005 60 e0 PUSH1 e0
0x00000007 60 02 PUSH1 02
0x00000009 0a EXP
0x0000000a 60 00 PUSH1 00
0x0000000c 35 CALLDATALOAD
0x0000000d 04 DIV
0x0000000e 63 06 72 e9 ee PUSH4 06 72 e9 ee
0x00000013 81 DUP2
0x00000014 14 EQ
0x00000015 60 24 PUSH1 24
0x00000017 57 JUMPI

loc_00000018:
0x00000018 80 DUP1
0x00000019 63 9d 04 0a f4 PUSH4 9d 04 0a f4
0x0000001e 14 EQ
0x0000001f 60 35 PUSH1 35
0x00000021 57 JUMPI

loc_00000022:
0x00000022 5b JUMPDEST
0x00000023 00 STOP

double(uint256):
0x00000024 5b JUMPDEST
0x00000025 60 45 PUSH1 45
0x00000027 60 04 PUSH1 04
0x00000029 35 CALLDATALOAD
0x0000002a 60 00 PUSH1 00
0x0000002c 60 4f PUSH1 4f
0x0000002e 82 DUP3
0x0000002f 60 02 PUSH1 02

loc_00000031:
0x00000031 5b JUMPDEST
0x00000032 02 MUL
0x00000033 90 SWAP1
0x00000034 56 JUMP

triple(uint256):
0x00000035 5b JUMPDEST
0x00000036 60 45 PUSH1 45
0x00000038 60 04 PUSH1 04
0x0000003a 35 CALLDATALOAD
0x0000003b 60 00 PUSH1 00
0x0000003d 60 4f PUSH1 4f
0x0000003f 82 DUP3
0x00000040 60 03 PUSH1 03
0x00000042 60 31 PUSH1 31
0x00000044 56 JUMP

Bytecode – Dispatcher (--list)
loc_00000000:
0x00000000 60 60 PUSH1 60
0x00000002 60 40 PUSH1 40
0x00000004 52 MSTORE
0x00000005 60 e0 PUSH1 e0
0x00000007 60 02 PUSH1 02
0x00000009 0a EXP
0x0000000a 60 00 PUSH1 00
0x0000000c 35 CALLDATALOAD
0x0000000d 04 DIV
0x0000000e 63 06 72 e9 ee PUSH4 06 72 e9 ee
0x00000013 81 DUP2
0x00000014 14 EQ
0x00000015 60 24 PUSH1 24
0x00000017 57 JUMPI

loc_00000018:
0x00000018 80 DUP1
0x00000019 63 9d 04 0a f4 PUSH4 9d 04 0a f4
0x0000001e 14 EQ
0x0000001f 60 35 PUSH1 35
0x00000021 57 JUMPI

loc_00000022:
0x00000022 5b JUMPDEST
0x00000023 00 STOP

double(uint256):
0x00000024 5b JUMPDEST
0x00000025 60 45 PUSH1 45
0x00000027 60 04 PUSH1 04
0x00000029 35 CALLDATALOAD
0x0000002a 60 00 PUSH1 00
0x0000002c 60 4f PUSH1 4f
0x0000002e 82 DUP3
0x0000002f 60 02 PUSH1 02

loc_00000031:
0x00000031 5b JUMPDEST
0x00000032 02 MUL
0x00000033 90 SWAP1
0x00000034 56 JUMP

triple(uint256):
0x00000035 5b JUMPDEST
0x00000036 60 45 PUSH1 45
0x00000038 60 04 PUSH1 04
0x0000003a 35 CALLDATALOAD
0x0000003b 60 00 PUSH1 00
0x0000003d 60 4f PUSH1 4f
0x0000003f 82 DUP3
0x00000040 60 03 PUSH1 03
0x00000042 60 31 PUSH1 31
0x00000044 56 JUMP

Bytecode – Dispatcher (--list)
loc_00000000:
0x00000000 60 60 PUSH1 60
0x00000002 60 40 PUSH1 40
0x00000004 52 MSTORE
0x00000005 60 e0 PUSH1 e0
0x00000007 60 02 PUSH1 02
0x00000009 0a EXP
0x0000000a 60 00 PUSH1 00
0x0000000c 35 CALLDATALOAD
0x0000000d 04 DIV
0x0000000e 63 06 72 e9 ee PUSH4 06 72 e9 ee
0x00000013 81 DUP2
0x00000014 14 EQ
0x00000015 60 24 PUSH1 24
0x00000017 57 JUMPI

loc_00000018:
0x00000018 80 DUP1
0x00000019 63 9d 04 0a f4 PUSH4 9d 04 0a f4
0x0000001e 14 EQ
0x0000001f 60 35 PUSH1 35
0x00000021 57 JUMPI

loc_00000022:
0x00000022 5b JUMPDEST
0x00000023 00 STOP

double(uint256):
0x00000024 5b JUMPDEST
0x00000025 60 45 PUSH1 45
0x00000027 60 04 PUSH1 04
0x00000029 35 CALLDATALOAD
0x0000002a 60 00 PUSH1 00
0x0000002c 60 4f PUSH1 4f
0x0000002e 82 DUP3
0x0000002f 60 02 PUSH1 02

loc_00000031:
0x00000031 5b JUMPDEST
0x00000032 02 MUL
0x00000033 90 SWAP1
0x00000034 56 JUMP

triple(uint256):
0x00000035 5b JUMPDEST
0x00000036 60 45 PUSH1 45
0x00000038 60 04 PUSH1 04
0x0000003a 35 CALLDATALOAD
0x0000003b 60 00 PUSH1 00
0x0000003d 60 4f PUSH1 4f
0x0000003f 82 DUP3
0x00000040 60 03 PUSH1 03
0x00000042 60 31 PUSH1 31
0x00000044 56 JUMP

Code Analysis – Vulnerable Contract
contract SendBalance {

mapping (address => uint) userBalances ;
bool withdrawn = false ;

function getBalance (address u) constant returns (uint){
return userBalances [u];

}

function addToBalance () {
userBalances[msg.sender] += msg.value ;

}

function withdrawBalance (){
if (!(msg.sender.call.value(

userBalances [msg.sender])())) { throw ; }
userBalances [msg.sender] = 0;

}
}

Code Analysis – Vulnerable Contract
contract SendBalance {

mapping (address => uint) userBalances ;
bool withdrawn = false ;

function getBalance (address u) constant returns (uint){
return userBalances [u];

}

function addToBalance () {
userBalances[msg.sender] += msg.value ;

}

function withdrawBalance (){
if (!(msg.sender.call.value(

userBalances [msg.sender])())) { throw ; }
userBalances [msg.sender] = 0;

}
}

Caller contract can recall this function
using its fallback function

Understanding the control flow

� In the case of reentrant vulnerability, since we can
record the EVM state at each instruction using
porosity.

� We can track in which basic block SSTORE
instructions are called.

� userBalances [msg.sender] = 0;

� And track states for each basic block.

.\demo.ps1
$porosity = 'E:\projects\porosity\Debug\porosity.exe'
$abi =
'[{\"constant\":false,\"inputs\":[],\"name\":\"withdrawBalance\",\"outputs\":[],\"ty
pe\":\"function\"},{\"constant\":false,\"inputs\":[],\"name\":\"addToBalance\",\"out
puts\":[],\"type\":\"function\"},{\"constant\":true,\"inputs\":[{\"name\":\"u\",\"ty
pe\":\"address\"}],\"name\":\"getBalance\",\"outputs\":[{\"name\":\"\",\"type\":\"ui
nt256\"}],\"type\":\"function\"}]'
$code =
'60606040526000357c01009004806
35fd8c7101461004f578063c0e317fb1461005e578063f8b2cb4f1461006d5761004d565b005b61005c6
004805050610099565b005b61006b600480505061013e565b005b6100836004808035906020019091905
05061017d565b6040518082815260200191505060405180910390f35b3373fffffffffffffffffffffff
fffffffffffffffff16611111600060005060003373ff1
6815260200190815260200160002060005054604051809050600060405180830381858888f1935050505
0151561010657610002565b6000600060005060003373fffffffffffffffffffffffffffffffffffffff
f168152602001908152602001600020600050819055505b565b34600060005060003373fffffffffffff
fffffffffffffffffffffffffff168152602001908152602001600020600082828250540192505081905
5505b565b6000600060005060008373ff1681526020019
081526020016000206000505490506101b6565b91905056’
& $porosity --abi $abi --runtime-code $code --decompile --verbose 0

Known class of bugs
� Reentrant Vulnerabilities / Race Condition

� Famously known because of the $50M USD DAO hack (2016) [8]
� Call Stack Vulnerabilities

� Got 1024 frames but a bug ain’t one – c.f. Least Authority [12]
� Time Dependency Vulnerabilities

� @mhswende blogposts are generally awesome, particularly the roulette
one [10]

Future
� Ethereum DApps created a new segment for softwares.
� Porosity

� Improving support for conditional and loop statements
� Ethereum / Solidity & Security

� Fast growing community and more tools such as OYENTE or Porosity
� Personally, looking forward seeing the Underhanded Solidity Coding Contest [10]

results
� Interesting projects on Quorum [14] which adds a privacy layer to the blockchain.

� Pretty big move as it’s a strong requirement for Enterprise Blockchain.
� EVM vulnerabilities triggered by malicious bytecode? CLOUDBURST on the

blockchain
� More Blockchain VMs ?

References
[1] Woods, Gavin. "Ethereum: A Secure Decentralised Generalised Transaction Ledger." Web. https://github.com/ethereum/yellowpaper.pdf
[2] Olofsson, Andreas. "Solidity Workshop." Web. https://github.com/androlo/solidity-workshop
[3] Olofsson, Andreas. "Solidity Contracts." Web. https://github.com/androlo/standard-contracts
[4] Velner, Yarn, Jason Teutsch, and Loi Luu. "Smart Contracts Make Bitcoin Mining Pools Vulnerable." Web. https://eprint.iacr.org/2017/230.pdf
[5] Luu, Loi, Duc-Hiep Chu, Hrishi Olickel, Aquinas Hobor. "Making Smart Contracts Smarter." Web.
https://www.comp.nus.edu.sg/%7Ehobor/Publications/2016/Making%20Smart%20Contracts%20Smarter.pdf
[6] Atzei, Nicola, Massimo Bartoletti, and Tiziana Cimoli. " A Survey of Attacks on Ethereum Smart Contracts." Web.
https://eprint.iacr.org/2016/1007.pdf
[7] Sarkar, Abhiroop. "Understanding the Transactional Nature of Smart-Contracts." Web. https://abhiroop.github.io/Exceptions-and-Transactions
[8] Siegel, David. "Understanding The DAO Attack." Web. http://www.coindesk.com/understanding-dao-hack-journalists
[9] Blockchain software for asset management. "OYENTE: An Analysis Tool for Smart Contracts." Web. https://github.com/melonproject/oyente
[10] Holst Swende, Martin. “Breaking the house.“ Web. http://martin.swende.se/blog/Breaking_the_house.html
[11] Buterin, Vitalik. "Thinking About Smart Contract Security.“Web. https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security
[12] Least Authority. "Gas Economics: Call Stack Depth Limit Errors." Web. https://github.com/LeastAuthority/ethereum-
analyses/blob/master/GasEcon.md#callstack-depth-limit-errors
[13] Underhanded Solidity Coding Contest, Web. http://u.solidity.cc/
[14] Quorum. "A permissioned implementation of Ethereum supporting data privacy." https://github.com/jpmorganchase/quorum

https://github.com/ethereum/yellowpaper.pdf
https://github.com/androlo/solidity-workshop
https://github.com/androlo/standard-contracts
https://eprint.iacr.org/2017/230.pdf
https://eprint.iacr.org/2016/1007.pdf
https://abhiroop.github.io/Exceptions-and-Transactions
http://www.coindesk.com/understanding-dao-hack-journalists
https://github.com/melonproject/oyente
http://martin.swende.se/blog/Breaking_the_house.html
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security
https://github.com/LeastAuthority/ethereum-analyses/blob/master/GasEcon.md#callstack-depth-limit-errors
http://u.solidity.cc/
https://github.com/jpmorganchase/quorum

m@comae.io / @msuiche
https://github.com/comaeio/porosity

