Por05|ty
Decompz/mg Ethe/j;_;{‘ art Contracts

42 comae
. : technologies :

mailto:m@comae.io

Whoami

- @msuiche ¥ ©)

+ Comae Technologies

+ OPCDE - www.opcde.com

+ First time in Vegas since BlackHat 2011

 Mainly Windows-related stuff
+ CloudVolumes (VMware App Volumes)
+ Memory Forensics for DFIR (Hibr2Bin, Dumplt etc.)

* "1ooks 1like such fun guy” - TheShadowBrokers
+ Didn't know much about blockchain before this project

eeeeeeeeeeee

Just so you know...

 We won't talk a
 We won't talk a

 We won't talk a

+ We will ta
- We will ta
+ We will ta

NDOUt
DOUL

NDOUt

POW/POS stuff
Merkle Trees

now to becoming a crypto-currency millionaire

K about the Ethereum EVM
K about Solidity

K about smart-contract bytecodes

 And yes, the tool isn't perfect ©

eeeeeeeeeeee

Agenda

 Ethereum Virtual Machine (EVM)
+ Memory Management

+ Addresses

+ Call Types

+ Type Discovery

+ Smart-Contract

+ Code Analysis

+ Known Bugs

+ Future

eeeeeeeeeeee

Solidity

+ Solidity the quality or state of being firm or strong in
structure.

+ But also the name of Ethereum’s smart-contracts compiler

* Porosity is the quality of being porous, or full of tiny holes.
Liquids go right through things that have porosity.

+ But also the name of Comae’s smart-contract decompiler.

eeeeeeeeeeee

PEF"_€0

Ethereum Virtual Machine (EVM)

+ Account/Contract/Blockchain
+ A Smart-Contract is made of bytecode stored in the blockchain.
 An address is a 160-bits value & corresponds to an "account”

+ Operates 256-bits pseudo-registers
+ EVM does not really have registers, but uses a virtual stack to replace them.

eeeeeeeeeeee

comae

technologies

AN
REF €0

Solidity & “Smart Contracts”

+ Solidity compiles JavaScript-like code into Ethereum bytecode.

contract Coin {
// The keyword "public" makes those variables

E: \defconZOl7> & $solc Coin.sol --bin-runtime

// readable from outside.

address pUbllC minter; inary of the runtime part:
. . . 60606040526000357c01009004
mapping (address => uint) public balances; 8063075461721461005a57806327 e235e31461009357806340c1019146100bF578063d0679d3414
6100e057610058565b005b6100676004805050610101565b60405180827 3ffffffffffffffffffff
frffffffffrffffff16815260200191505060405180910390f35b6100a9600480803590602001
. . 9091905050610127565b6040518082815260200191505060405180910390f35b6100de6004808035
// Events allow light clients to react on 906020019091908035906020019091905050610142565b005b6100FF600480803590602001909190
e . 80359060200190919050506101df565b005b600060009054906101000a90047 3ffffffffffffffff
// changes efficiently. LSS ST e T baR C00T60206120,2 B0 SOOGS0 04

. 1 b 4 101 a 4 167

event Sent(address from, address to, uint amount); FEFFFFFFrFFrErFrrfrfrrfrfrrrffffrffffl63373Ffffffffffffffffrfffffffffffffiffeee

FFFF1614151561019e576101db565b8060016000506000847 3FFFFFfFffffrffrffffifffffffrfe
ffggffggfflggl5(2)60202192%15%202221622222?20228%25021012%505881902558(5)b585056gb
. . 8060016000506000337 3FFFFFFFFFFEfrffifrffffrfififfrfrffrffirfif16815260200190815260
// This 1is the constructor whose code is 200160002060005054101561021b57610307 565b8060016000506000337 3FFFF FFFFFFFFFFFFFrre
. FEFEFFFFFFFFFFFFrrfffl68152602001908152602001600020600082828250540392505081905550
// run only when the contract is created. 8060016000506000847 3FFFFFfffirffrffirffiffffffiffffffffrfffff16815260200190815260)
function Coin() { 200160002060008282825054019250508190555073990db2d318623022685e8086b57 5507 2abe2b
5b780aflee8lece35ee3cd334533838360405180847 3FFFFFfFffffffifrrrfrfiffifirriffifes
minter = mse.sender: FFFF168152602001837 3FFFFEFFFFrfrfffrfreffiffrfeffffffffffffff16815260200182815260

= g- ’ 2001935050505060405180910390a15b505056

} PS E:\defcon2017> & ylc Coin.sol --abi
ontract JSON ABI
function mint(addpess r‘eceiver‘ uint amount) { {"constant": true,"inputs":[],"name": "nn'nter"',"outputs {"name":"" "type"'"addr
’ ess"}],"t e":"function"}-,{"constant SEr Do " name" g ype""'address
1-F (msg Sender' | = minter\) return: }-],"name":"ba1ances","outputs":[{"nan A 2 int256"1}], type' funct'ion"}
‘) > i constant":fa1se,"‘inputs H { ": Iece'lver",' : address'},{ name" : amoun
balances[r\eceivep] += amount: " "type < 'u’int256 11, name Mmi outputs 5 " yp ": funct’lon },L constant
) 3 nputs name G iver' ddr " name amount "typ
} 561 name send S 5 i g
{ anonymous {
, {"indexed":false, "name" ype":"address"}, {"indexed":false, "name":"
. . . amount","type":"uint256"}-],"name' :"Sent", "type":"event"}]
function send(address receiver, uint amount) {
. PS E:\defcon2017> & $solc Coin.sol --hashes
if (balances[msg.sender] < amount) return;
balances[msg.sender] -= amount; Function signatures:
. 07546172: minter()
balances[receiver] += amount; 27e235e3: balances (address)
. 40c10f19: mint(address,uint256)
Sent(msg.sender, receiver, amount); d0679d34: send(address,uint256)

PS E:\defcon2017>

PEF"_€0

Memory Management

+ Stack
+ Virtual stack is being used for operations to pass parameters to opcodes.
+ 256-bit values/entries
+ Maximum size of 1024 elements

+ Storage (Persistent)
+ Key-value storage mapping (256-to-256-bit integers)

+ Can't be enumerated.
+ SSTORE/SLOAD

+ Memory (Volatile)

+ 256-Dbit values (lots of AND operations, useful for type discovery)
+ MSTORE/MLOAD

eeeeeeeeeeee

eeeeeeeeeeee

Basic Blocks

+ Usually start with the JUMPDEST instruction — except few cases.

+ JUMP* instruction jump to the address contained in the 15t element

of the stack.

+ JUMP™* instruction are (almost always) preceded by PUSH instruction

+ This allows to push the destination address in the stack, instead of
hardcoding the destination offset.

+ SWAP/DUP/POP stack manipulation instructions can make jump

destination address harder to retrieve
+ This requires dynamic analysis to rebuild the relationship between each

basic block.

EVM functions/instructions

« EVM instructions are more |i
© Arithmetic, Comparison & B
+ SHA3

e functions, suc

itwise Logic Ope

 Environmental & Block Information
+ Stack, Memory, Storage and Flow Operations
Logging & System Operations

1 as.

rations

eeeeeeeeeeee

Instruction call - Addition

MME-ME-

PUSH]1 Ox1 O0Ox1
n + 1 PUSH]1 0x2 0xZ2 Ox1
n + 2 ADD 0x3

* The above translates at the EVM-pseudo code:
'add (0x2, 0x1)

EVM Call

+ Can be identified by the CALL instruction.

+ Call external accounts/contracts pointed by the second
parameter

+ The second parameter contains the actual 160 address of the
external contract

call(
+ With the exception of 4 hardcoded contracts: FEEELES
+ 1 - elliptic curve public key recovery function f,:iue,
+ 2- SHAZ function inputOffset,

5 , inputSize,
3- RIPEMD160 function outputoFfeet,

+ 4- |dentity function outputSize

DEF 20N 3 comae

+ CALLDATALOAD instruction is used to read the Environmental
Information Block (EIB) such as parameters.

+ First 4 bytes of the EIB contains the 32-bits hash of the called
function.

+ Followed by the parameters based on their respective types.
 e.g. int would be a 256 bits word.

User-Defined functions (Solidity)

function foo(int a, int b) {

return a + b;

' a = calldataload (0x4) }

' b = calldataload (0x24)
' add (calldataload (0x4), calldataload (0x24)

PEF - _c0N 3°°m°e

Type Discovery - Addresses

+ As an example, addresses are 160-bit words

+ Since stack registers are 256-bit words, they can easily be identified
through AND operations using the
Oxfffffffffffffffffffffffffffffffffffffffet maSk.

+ Mask can be static or computed dynamically

Ethereum Assembly Translation (msg.sender)

CALLER and (reg256, sub(exp (2, 0xalO), 1)) (EVM)
PUSH1 ©9x01

PUSH ©xA0 reg256 & (2 ** 0xA0) - 1) (Intermediate)
PUSH1 09x02

EXP

SUB address (Solidity)

AND

eeeeeeeeeeee

Bytecode

' The bytecode is divided in two categories:
+ Pre-loader code

+ Found at the beginning that contains the routine to bootstrap
the contract

+ Runtime code of the contract

+ The core code written by the user that got compiled by
Solidity
+ Each contract contain a dispatch function that redirects the

call to the corresponding function based on the provided
hash function.

Bytecode — Pre-loader

PBEF. . Con °C°m°e

+ CODECOPY copies the runtime part of the contract into the EVM

memory — which gets executed at base address 0x0

00000000
00000002
00000004
00000005
00000007
00000009
0000000b

0000000e
0000000f
00000010
00000011
00000012
00000014
00000015

6060
6040
52
6000
6001
6000
610001
Oa
81
54
81
60ff
02
19

PUSH1 60
PUSH1 40
MSTORE
PUSH1 00
PUSH1 01
PUSH1 00
PUSH2 0001
EXP

DUP2
SLOAD
DUPZ2
PUSH1
MUL

NOT

00000016 16
00000017 90
00000018 83
00000019 02
0000001a 17
0000001b 90
0000001c 55
0000001d 50
0000001le 61bbO1
00000021 80
00000022 612b00
00000025 6000
00000027 39
00000028 6000
0000002a £3

AND

SWAP1

DUP4

MUL

OR

SWAP1
SSTORE

POP

PUSH2 bb01
DUP1

PUSH2 2b00
PUSH1 00
CODECOPY
PUSH1 00
RETURN

Bytecode — Dispatcher (--List

loc 00000000: calldataload(0x@) / exp(0x2, ©Oxe0)

0x00000000
0x00000002
0x00000004
0x00000005
0x00000007
0x00000009
0x0000000a
0x0000000c
0x0000000d
0x0000000e
0x00000013
0x00000014
0x00000015
0x00000017

60
60
52
60
60
Oa
60
35
04
63
81
14
60
57

loc 00000018:

0x00000018
0x00000019
0x0000001e
0x0000001¢f
0x00000021

80
63
14
60
57

loc 00000022:
0x00000022
0x00000023

5b
00

60
40

el

02

00

06

24

9d

35

72

04

e9

Oa

(={-]

f4

PUSH1 60
PUSH1 40
MSTORE

PUSH1 e0
PUSH1 02

EXP

PUSH1 00
CALLDATALOAD
DIV

—

PUSH4 06 72 e9 ee

DUP2

EQ

PUSH1 24
JUMPI

DUP1

—

PUSH4 9d 04 Oa f4

EQ
PUSH1 35
JUMPI

JUMPDEST
STOP

double (uint2506) :

0x00000024 5b
0x00000025 60
0x00000027 60
0x00000029 35
0x0000002a 60
0x0000002c 60
0x0000002e 82
0x0000002f 60

loc 00000031:
0x00000031 5b
0x00000032 02
0x00000033 90
0x00000034 56

45
04

00
4f

02

triple (uint256) :

0x00000035 5b
0x00000036 60
0x00000038 60
0x0000003a 35
0x0000003b 60
0x0000003d 60
0x0000003f 82
0x00000040 60
0x00000042 60
0x00000044 56

45
04

00
4f

03
31

comae

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 02

JUMPDEST
MUL
SWAP1
JUMP

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 03
PUSH1 31
JUMP

PBEF. . Con °C°m°e

 The 4 bytes of the sha3 (keccak256) value for the string

functionName (paramlType, param2Type, etc)

Function Hashes

"constant":false,

"inputs":[{ "name":"a", "type":"uint256" }],
"name" : "double",

"outputs":[{ "name":"", "type":"uint256" }],
"type":"function"

keccak256("double(uint256)") =>
eee972066698d890c32fecedb38a360c32b71d0a29ffc75b6ab6d2774ec9901

double (uint256) -> Oxeee97206
triple(uint256) -> 0x£f40a049d

comae

technologies

Extracting function hash

+ calldataload (0x0) / exp(0x2, 0xe0)
' (0x12345678xxxx / 0x00000001xxxx) = 0x12345678

PS C:\Program Files\Geth> .\evm.exe \
--code 60e060020a60003504 \

--debug \
--input 12345678aaaaaaaabbbbbbbbccccccccdddddddd

PC 00000009: STOP GAS: 9999999923 COST: ©

STACK =
0000: 0000VVVVVVVVVVVVVVVVVYVBVVBVVVVVVBRBVRBNARBVYVNYVVYRVVA12345678

MEM = @
STORAGE = ©

Fthereum Emulator

© Jumpi (eg(calldataload (0x0) / exp(0x2, 0xe0), 0xeee97206))

Control Flow Graph

Static CFG (--cfg)

loc_0x00000000

loc_0x0000004f

loc_0x00000018

double(uint256)

Oxdeadbabe

loc_0x00000022 triple(uint256)

Y

loc_0x00000031

|

loc_0x00000045

DEF 20N 3 comae

Emulated CFG (--cfg-futt)

loc_0x00000000 |—

Y

loc_0x00000018 double(uint256)

loc_0x00000022 triple(uint256)

L loc_0x00000031

\ 4

A4

loc_0x0000004f

Y

loc_0x00000045

PBEF. . Con cwmoe

Dispatcher — pseudo code

hash = calldataload(ox0) / exp(©x2, 0xe0);
switch (hash) {
case 0xeee97206: // double(uint256)
memory[0x60] = calldataload(ox4) * 2;
return memory[Ox60];
break;
case 0xf40a049d: // triple(uint256)

contract C {
function double(int arg 4) {
return arg 4 * 2;

}

memory[0x60] = calldataload(ox4) * 3;
return memory[0Ox60];

break;

default:

// STOP

break; Translated Code

function triple(int arg 4) {
return arg 4 * 3;

}

Pseudo-Code

Bytecode — Dispatcher (--List

loc 00000000:

0x00000000
0x00000002
0x00000004
0x00000005
0x00000007
0x00000009
0x0000000a
0x0000000c
0x0000000d
0x0000000e
0x00000013
0x00000014
0x00000015
0x00000017

60
60
52
60
60
Oa
60
35
04
63
81
14
60
57

loc 00000018:

0x00000018
0x00000019
0x0000001e
0x0000001¢f
0x00000021

80
63
14
60
57

loc 00000022:
0x00000022
0x00000023

5b
00

60
40

el

02

00

06

24

9d

35

72

04

e9

Oa

SIS

4

PUSH1 60
PUSH1 40
MSTORE

PUSH1 e0
PUSH1 02

EXP

PUSH1 00
CALLDATALOAD
IDARVYA

PUSH4 06 72 e9 ee

DUP2

EQ

PUSH1 24
JUMPI

DUP1

PUSH4 9d 04 0Oa f4

EQ
PUSH1 35
JUMPI

JUMPDEST
STOP

> 0x00000024 5b
0x00000025 60
0x00000027 60
0x00000029 35
0x0000002a 60
0x0000002c 60
0x0000002e 82
0x0000002f 60

loc 00000031:
0x00000031 5b
0x00000032 02
0x00000033 90
0x00000034 56

double (uint256) :

45
04

00
4f

02

triple (uint256) :

0x00000035 5b
0x00000036 60
0x00000038 60
0x0000003a 35
0x0000003b 60
0x0000003d 60
0x0000003f 82
0x00000040 60
0x00000042 60
0x00000044 56

45
04

00
4f

03
31

comae

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 02

JUMPDEST
MUL
SWAP1
JUMP

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 03
PUSH1 31
JUMP

Bytecode — Dispatcher (--List

loc 00000000:

0x00000000
0x00000002
0x00000004
0x00000005
0x00000007
0x00000009
0x0000000a
0x0000000c
0x0000000d
0x0000000e
0x00000013
0x00000014
0x00000015
0x00000017

60
60
52
60
60
Oa
60
35
04
63
81
14
60
57

loc 00000018:

0x00000018
0x00000019
0x0000001e
0x0000001¢f
0x00000021

80
63
14
60
57

loc 00000022:
0x00000022
0x00000023

5b
00

60
40

el

02

00

06

24

9d

35

72

04

e9

Oa

SIS

4

PUSH1 60
PUSH1 40
MSTORE

PUSH1 e0
PUSH1 02

EXP

PUSH1 00
CALLDATALOAD
IDARVYA

PUSH4 06 72 e9 ee

DUP2

EQ

PUSH1 24
JUMPI

DUP1

PUSH4 9d 04 0Oa f4

EQ
PUSH1 35
JUMPI

JUMPDEST
STOP

> 0x00000024 5b
0x00000025 60
0x00000027 60
0x00000029 35
0x0000002a 60
0x0000002c 60
0x0000002e 82
0x0000002f 60

loc 00000031:
0x00000031 5b
0x00000032 02
0x00000033 90
0x00000034 56

double (uint256) :

45
04

00
4f

02

triple (uint256) :

0x00000035 5b
0x00000036 60
0x00000038 60
0x0000003a 35
0x0000003b 60
0x0000003d 60
0x0000003f 82
0x00000040 60
0x00000042 60
0x00000044 56

45
04

00
4f

03
31

comae

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 02

JUMPDEST
MUL
SWAP1
JUMP

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 03
PUSH1 31
JUMP

PBEF. . Con °C°m°e

Bytecode — Dispatcher (--List

double (uint2506) :

loc _00000000: p—— ():00000024 5b JUMPDEST
0x00000000 60 60 PUSH1 60 000000025 60 45 PUSH1 45
0x00000002 60 40 PUSH1 40 000000027 60 04 PUSH1 04
0x00000004 52 MSTORE 0x00000029 35 CALLDATALOAD
000000005 60 e0 PUSH1 e0 0x0000002a 60 00 PUSH1 00
0x00000007 60 02 PUSH1 02 0x0000002c 60 4f PUSH1 4f
0200000009 Oa EXP 0x0000002e 82 DUP3
0x0000000a 60 00 PUSH1 00 0x0000002f 60 02 PUSH1 02
0x0000000c 35 CALLDATALOAD
0x0000000d 04 DIV loc 00000031:
0x0000000e 63 06 72 e9 ee PUSH4 06 72 e9 ee 0x06000031 5b JUMPDEST
000000013 81 DUP2 0x00000032 02 MUL
000000014 14 EQ 0x00000033 90 SWAP1
000000015 60 24 PUSH1 24 0x00000034 56 JUMP
000000017 57 JUMPI

triple (uint256) :
loc 00000018: 000000035 5b JUMPDEST
000000018 80 DUP1 000000036 60 45 PUSH1 45
0x00000019 63 9d 04 0Oa f4 PUSH4 9d 04 0Oa f4 0x00000038 60 04 PUSH1 04
0x0000001le 14 EQ 0x0000003a 35 CALLDATALOAD
0x0000001f 60 35 PUSH1 35 0x0000003b 60 00 PUSH1 00
0x00000021 57 JUMPI 0x0000003d 60 4f PUSH1 4f

0x0000003f 82 DUP3
loc 00000022: 000000040 60 03 PUSH1 03
0x00000022 5b JUMPDEST 0x00000042 60 31 PUSH1 31
0200000023 00 STOP

0x00000044 56 JUMP

Bytecode — Dispatcher (--List

loc 00000000:

0x00000000
0x00000002
0x00000004
0x00000005
0x00000007
0x00000009
0x0000000a
0x0000000c
0x0000000d
0x0000000e
0x00000013
0x00000014
0x00000015
0x00000017

60
60
52
60
60
Oa
60
35
04
63
81
14
60
57

loc 00000018:

0x00000018
0x00000019
0x0000001e
0x0000001¢f
0x00000021

80
63
14
60
57

loc 00000022:
0x00000022
0x00000023

5b
00

60
40

el

02

00

06

24

9d

35

72

04

e9

Oa

SIS

4

PUSH1 60
PUSH1 40
MSTORE

PUSH1 e0
PUSH1 02

EXP

PUSH1 00
CALLDATALOAD
IDARVYA

PUSH4 06 72 e9 ee

DUP2

EQ

PUSH1 24
JUMPI

DUP1

PUSH4 9d 04 0Oa f4

EQ
PUSH1 35
JUMPI

JUMPDEST
STOP

= 0x00000024 5b
0x00000025 60
0x00000027 60
0x00000029 35
0x0000002a 60
0x0000002c 60
0x0000002e 82
0x0000002f 60

loc_00000031:
0x00000031 5b
0x00000032 02
0x00000033 90
0x00000034 56

double (uint2506) :

45
04

00
4f

02

triple (uint256) :

0x00000035 5b
0x00000036 60
0x00000038 60
0x0000003a 35
0x0000003b 60
0x0000003d 60
0x0000003f 82
0x00000040 60
0x00000042 60
0x00000044 56

45
04

00
4f

03
31

comae

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 02

JUMPDEST
MUL
SWAP1
JUMP

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 03
PUSH1 31
JUMP

Bytecode — Dispatcher (--List

loc 00000000:

0x00000000
0x00000002
0x00000004
0x00000005
0x00000007
0x00000009
0x0000000a
0x0000000c
0x0000000d
0x0000000e
0x00000013
0x00000014
0x00000015
0x00000017

60
60
52
60
60
Oa
60
35
04
63
81
14
60
57

loc 00000018:

0x00000018
0x00000019
0x0000001e
0x0000001¢f
0x00000021

80
63
14
60
57

loc 00000022:
0x00000022
0x00000023

5b
00

60
40

el

02

00

06

24

9d

35

72

04

e9

Oa

SIS

4

PUSH1 60
PUSH1 40
MSTORE

PUSH1 e0
PUSH1 02

EXP

PUSH1 00
CALLDATALOAD
IDARVYA

PUSH4 06 72 e9 ee

DUP2

EQ

PUSH1 24
JUMPI

DUP1

—

PUSH4 9d 04 Oa f4

EQ
PUSH1 35
JUMPT

JUMPDEST
STOP

double (uint2506) :

0x00000024 5b
0x00000025 60
0x00000027 60
0x00000029 35
0x0000002a 60
0x0000002c 60
0x0000002e 82
0x0000002f 60

loc 00000031:
0x00000031 5b
0x00000032 02
0x00000033 90
0x00000034 56

45
04

00
4f

02

triple (uint256) :

0x00000035 5b
0x00000036 60
0x00000038 60
0x0000003a 35
0x0000003b 60
0x0000003d 60
0x0000003f 82
0x00000040 60
0x00000042 60
0x00000044 56

45
04

00
4f

03
31

comae

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 02

JUMPDEST
MUL
SWAP1
JUMP

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 03
PUSH1 31
JUMP

Bytecode — Dispatcher (--List

loc 00000000:

0x00000000
0x00000002
0x00000004
0x00000005
0x00000007
0x00000009
0x0000000a
0x0000000c
0x0000000d
0x0000000e
0x00000013
0x00000014
0x00000015
0x00000017

60
60
52
60
60
Oa
60
35
04
63
81
14
60
57

loc 00000018:

0x00000018
0x00000019
0x0000001e
0x0000001¢f
0x00000021

80
63
14
60
57

loc 00000022:
0x00000022
0x00000023

5b
00

60
40

el

02

00

06

24

9d

35

72

04

e9

Oa

SIS

f4

PUSH1 60
PUSH1 40
MSTORE

PUSH1 e0
PUSH1 02

EXP

PUSH1 00
CALLDATALOAD
IDARVYA

PUSH4 06 72 e9 ee

DUP2

EQ

PUSH1 24
JUMPI

DUP1

—

PUSH4 9d 04 Oa f4

EQ
PUSH1 35
JUMPT

JUMPDEST
STOP

double (uint2506) :

0x00000024 5b
0x00000025 60
0x00000027 60
0x00000029 35
0x0000002a 60
0x0000002c 60
0x0000002e 82
0x0000002f 60

loc 00000031:
0x00000031 5b
0x00000032 02
0x00000033 90
0x00000034 56

45
04

00
4f

02

triple (uint256) :

0x00000035 b5b
0x00000036 60
0x00000038 60
0x0000003a 35
0x0000003b 60
0x0000003d 60
0x0000003f 82
0x00000040 60
0x00000042 60
0x00000044 56

45
04

00
4f

03
31

comae

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 02

JUMPDEST
MUL
SWAP1
JUMP

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 03
PUSH1 31
JUMP

Bytecode — Dispatcher (--List

loc 00000000:

0x00000000
0x00000002
0x00000004
0x00000005
0x00000007
0x00000009
0x0000000a
0x0000000c
0x0000000d
0x0000000e
0x00000013
0x00000014
0x00000015
0x00000017

60
60
52
60
60
Oa
60
35
04
63
81
14
60
57

loc 00000018:

0x00000018
0x00000019
0x0000001e
0x0000001¢
0x00000021

80
63
14
60
57

loc 00000022:
0x00000022
0x00000023

5b
00

60
40

el

02

00

06

24

9d

35

72

04

e9

Oa

EE

4

PUSH1 60
PUSH1 40
MSTORE

PUSH1 eO
PUSH1 02

EXP

PUSH1 00
CALLDATALOAD
DIV

PUSH4 06 72 e9 ee

DUP2

EQ

PUSH1 24
JUMPI

DUP1

—

PUSH4 9d 04 Oa f4

EQ
PUSH1 35
JUMPI

JUMPDEST
STOP

double (uint2506) :

0x00000024 5b
0x00000025 60
0x00000027 60
0x00000029 35
0x0000002a 60
0x0000002c 60
0x0000002e 82
0x0000002f 60

loc 00000031:
0x00000031 5b
0x00000032 02
0x00000033 90
0x00000034 56

45
04

00
4f

02

triple (uint256) :

0x00000035 b5b
0x00000036 60
0x00000038 60
0x0000003a 35
0x0000003b 60
0x0000003d 60
0x0000003f 82
0x00000040 60
0x00000042 60
0x00000044 56

45
04

00
4f

03
31

comae

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 02

JUMPDEST
MUL
SWAP1
JUMP

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 03
PUSH1 31
JUMP

Bytecode — Dispatcher (--List

loc 00000000:

0x00000000
0x00000002
0x00000004
0x00000005
0x00000007
0x00000009
0x0000000a
0x0000000c
0x0000000d
0x0000000e
0x00000013
0x00000014
0x00000015
0x00000017

60
60
52
60
60
Oa
60
35
04
63
81
14
60
57

loc 00000018:

0x00000018
0x00000019
0x0000001e
0x0000001¢f
0x00000021

80
63
14
60
57

loc 00000022:
0x00000022
0x00000023

5b
00

60
40

el

02

00

06

24

9d

35

72

04

e9

Oa

SIS

4

PUSH1 60
PUSH1 40
MSTORE

PUSH1 e0
PUSH1 02

EXP

PUSH1 00
CALLDATALOAD
IDARVYA

PUSH4 06 72 e9 ee

DUP2

EQ

PUSH1 24
JUMPI

DUP1

PUSH4 9d 04 Oa f4

EQ
PUSH1 35
JUMPI

JUMPDEST
STOP

double (uint2506) :

0x00000024
0x00000025
0x00000027
0x00000029
0x0000002a
0x0000002c
0x0000002e
0x0000002f£

5b
60
60
35
60
60
82
60

45
04

00
4f

02

loc 00000031:

0x00000031
0x00000032
0x00000033
0x00000034

5b
02
90
56

triple (uint256) :

0x00000035
0x00000036
0x00000038
0x0000003a
0x0000003b
0x0000003d
0x0000003f
0x00000040
0x00000042

5b
60
60
35
60
60
82
60
60

45
04

00
4f

03
31

comae

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 02

JUMPDEST
MUL
SWAP1
JUMP

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 03

0x00000044

56

PUSH1 31
JUMP

Bytecode — Dispatcher (--List

loc 00000000:

0x00000000
0x00000002
0x00000004
0x00000005
0x00000007
0x00000009
0x0000000a
0x0000000c
0x0000000d
0x0000000e
0x00000013
0x00000014
0x00000015
0x00000017

60
60
52
60
60
Oa
60
35
04
63
81
14
60
57

loc 00000018:

0x00000018
0x00000019
0x0000001e
0x0000001¢f
0x00000021

80
63
14
60
57

loc 00000022:
0x00000022
0x00000023

5b
00

60
40

el

02

00

06

24

9d

35

72

04

e9

Oa

SIS

4

PUSH1 60
PUSH1 40
MSTORE

PUSH1 e0
PUSH1 02

EXP

PUSH1 00
CALLDATALOAD
IDARVYA

PUSH4 06 72 e9 ee

DUP2

EQ

PUSH1 24
JUMPI

DUP1

PUSH4 9d 04 Oa f4

EQ
PUSH1 35
JUMPT

JUMPDEST
STOP

double (uint2506) :

0x00000024
0x00000025
0x00000027
0x00000029
0x0000002a
0x0000002c
0x0000002e
0x0000002f£

5b
60
60
35
60
60
82
60

45
04

00
4f

02

loc 00000031:

0x00000031
0x00000032
0x00000033
0x00000034

5b
02
90
56

triple (uint256) :

0x00000035
0x00000036
0x00000038
0x0000003a
0x0000003b
0x0000003d
0x0000003f
0x00000040
0x00000042

5b
60
60
35
60
60
82
60
60

45
04

00
4f

03
31

comae

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 02

JUMPDEST
MUL
SWAP1
JUMP

JUMPDEST
PUSH1 45
PUSH1 04
CALLDATALOAD
PUSH1 00
PUSH1 4f
DUP3

PUSH1 03

0x00000044

56

PUSH1 31
JUMP

comae

technologies

¢)

DEF"

Code Analysis — Vulnerable Contract

contract SendBalance {

mapping (address => uint) userBalances ;
bool withdrawn = false ;
function getBalance (address u) constant returns (uint) {

return userBalances [u];

function addToBalance () {
userBalances[msg.sender] += msg.value ;

function withdrawBalance () {
if (! (msg.sender.call.value (
userBalances [msg.sender]) ())) { throw ; }
userBalances [msg.sender] = 0;

PEF - _c0N 3 comae

Code Analysis — Vulnerable Contrac

contract SendBalance {

mapping (address => uint) userBalances ;
bool withdrawn = false ;
function getBalance (address u) constant returns (uint) {

return userBalances [u];

Caller contract can recall this function

function addToBalance () { using its fallback function
userBalances[msg.sender] += msg.value ;

function withdrawBalance () {
if (! (msg.sender.call.value (
userBalances [msg.sender]) ())) { throw ; }
luserBalances [msg.sénder] = 0; |

}

Understanding the control flow

N the
record

case of reentrant vulnerability, since we can
the EVM state at each instruction using

DOrosity.
 We can track in which basic block SSTORE
instructions are called.
'userBalances [msg.sender] = 0;

+ And track states for each basic block.

eeeeeeeeeeee

\demo.ps1

Sporosity = 'E:\projects\porosity\Debug\porosity.exe'

Sabi =
'"[{\"constant\":false, \"inputs\":[], \"name\":\"withdrawBalance\", \"outputs\":[],\"ty
pe\":\"function\"}, {\"constant\":false, \"inputs\":[], \"name\":\"addToBalance\", \"out
puts\": [1,\"type\":\"function\"}, {\"constant\":true, \"inputs\": [{\"name\":\"u\",\"ty
pe\":\"address\"}], \"name\":\"getBalance\", \"outputs\": [{\"name\":\"\",\"type\":\"ui
nt256\"}1,\"type\":\"function\"}]"'

Scode =
'60606040526000357¢c01009004806
35fd8c7101461004£578063¢c0e317fb1461005e578063f8b2cb4f1461006d5761004d565b005061005¢6
0048050506100995650005b61006b600480505061013e565b005b6100836004808035906020019091905
05061017d56506040518082815260200191505060405180910390f35b3373fffffffffffffffffffffff
fTffffffffffffff£ff16611111600060005060003373ftfffffffffffffffffffffffffffffffffffffrsrl
6815260200190815260200160002060005054604051809050600060405180830381858888£1935050505
0151561010657610002565b6000600060005060003373ftftffffffffffffffffffffffffffffffffffrft
£168152602001908152602001600020600050819055505b565034600060005060003373fffffffffffff
i fffffffffffffffffffffff£f168152602001908152602001600020600082828250540192505081905
5505b565b60006000600050600083 /3t ffffffffffffffffffffffffffffffffffff£££f1681526020019
081526020016000206000505490506101b6565091905056"

& Sporosity --abi $abi --runtime-code $code --decompile --verbose 0

comae

technologies

. Windows PowerShell — O X

PS E:\defcon201/> .\demo.psl
Porosity v0.1 (https://www.comae.i0)
att Suiche, Comae Technologies <support@comae.io>
he Ethereum bytecode commandline decompiler.
Decompiles the given Ethereum input bytecode and outputs the Solidity code.

Attempting to parse ABI definition...
success.
Hash: Ox5FD8C/710
function withdrawBalance() {
if (msg.sender.call.gas(4369).value() () {

}

Potential reentrant vulnerability found.

LOC: 5

Hash: OxCOE31/FB

function addToBalance() {
store[msg.sender] =
return;

store[msg.sender] + msg.value;

LOC: 4
Hash: OxF8B2CB4F
function getBalance(address) {

return storelarg_4];
1
J

LOC: 3
PS E:\defcon2017>

Known class of bugs

+ Reentrant Vulnerabilities / Race Condition
+ Famously known because of the $50M USD DAO hack (2016) [8]

+ Call Stack Vulnerabilities
+ Got 1024 frames but a bug ain't one — c.f. Least Authority [12]

+ Time Dependency Vulnerabilities

+ @mhswende blogposts are generally awesome, particularly the roulette
one [10]

eeeeeeeeeeee

Future

+ Ethereum DApps created a new segment for softwares.

+ Porosity
+ Improving support for conditional and loop statements

Ethereum / Solidity & Security
Fast growing community and more tools such as OYENTE or Porosity

+ Personally, looking forward seeing the Underhanded Solidity Coding Contest [10]
results

+ Interesting projects on Quorum [14] which adds a privacy layer to the blockchain.

+ Pretty big move as it's a strong requirement for Enterprise Blockchain.

+ EVM vulnerabilities triggered by malicious bytecode? CLOUDBURST on the
blockchain

+ More Blockchain VMs 7

PEF" . cOn

3 comae

technologies

References

1] Woods, Gavin. "Ethereum: A Secure Decentralised Generalised Transaction Ledger." Web. htips:.//github.com/ethereum/yellowpaper.pdi

2] Olofsson, Andreas. "Solidity Workshop." Web. pttps://github.com/androlo/solidity -workshog

[
[
[
[

4] Velner, Yarn, Jason Teutsch, and Loi Luu. "Smart Contracts Make Bitcoin Mining Pools Vulnerable." Web. https.//eprintiacr.org/201//230.pd]

]

3] Olofsson, Andreas. "Solidity Contracts." Web. hittps:.//github.com/androlo/standard-contractd
]
]

[5] Luu, Loi, Duc-Hiep Chu, Hrishi Olickel, Aquinas Hobor. "Making Smart Contracts Smarter." Web.
https.//www.comp.nus.edu.sg/% /Ehobor/Publications/20T6/Making%Z205mart%20Contracts%Z05Smarter.pdi]

[6] Atzei, Nicola, Massimo Bartoletti, and Tiziana Cimoli. " A Survey of Attacks on Ethereum Smart Contracts." Web.
httops.//eprint.iacr.org/2016/100/.pd

[7] Sarkar, Abhiroop. "Understanding the Transactional Nature of Smart-Contracts." Web. https.//abhiroop.github.io/Exceptions-and-Transactiond
[8] Siegel, David. "Understanding The DAO Attack." Web. ptip://www.coindesk.com/understanding-dao-hack-journalistg

[9] Blockchain software for asset management. "OYENTE: An Analysis Tool for Smart Contracts." Web. pttps.//github.com/melonproject/oyentd

[10] Holst Swende, Martin. “Breaking the house! Web. http://martin.swende.se/bDlog/Breaking the house.himl]
[11] Buterin, Vitalik. "Thinking About Smart Contract Security"Web. ptips.//blog.ethereum.org/2016/06/T19/thinking-Smart-contract-security

|12] Least Authority. "Gas tconomics: Call Stack Depth Limit Errors.” Web. https://github.com/LeastAuthority/ethereum-
pnalyses/blob/master/GasEcon.md#callstack-depth-limit-errors

[13] Underhanded Solidity Coding Contest, Web. hitp://u.solidity.cc/]

[14] Quorum. "A permissioned implementation of Ethereum supporting data privacy." phtips.//github.com/[pmorganchase/guorun

https://github.com/ethereum/yellowpaper.pdf
https://github.com/androlo/solidity-workshop
https://github.com/androlo/standard-contracts
https://eprint.iacr.org/2017/230.pdf
https://eprint.iacr.org/2016/1007.pdf
https://abhiroop.github.io/Exceptions-and-Transactions
http://www.coindesk.com/understanding-dao-hack-journalists
https://github.com/melonproject/oyente
http://martin.swende.se/blog/Breaking_the_house.html
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security
https://github.com/LeastAuthority/ethereum-analyses/blob/master/GasEcon.md#callstack-depth-limit-errors
http://u.solidity.cc/
https://github.com/jpmorganchase/quorum

c comae
o technologes . ’

