
Teaching Old Shellcode
New Tricks

DEF CON 2017

@midnite_runr

Whoami
• US Marine (out in 2001)

• Wrote BDF/BDFProxy

• Co-Authored Ebowla

• Found OnionDuke

• Work @ Okta

• Twitter: @midnite_runr

Why This Talk

• It’s fun

• It’s time to update publicly available shellcode

Outline

• Some History

• Introduced Methods

• Mitigations and Bypasses

Part I - History

Stephen Fewer’s Hash
API

• SFHA or Hash API or MetaSploit Payload Hash

• Introduced: 8/2009

• Uses a 4 byte hash to identify DLL!WinAPI in EAT

• JMPs to the WinAPI ; return to payload

• Some code borrowed from M.Miller’s 2003
Understanding Windows Shellcode paper

http://blog.harmonysecurity.com/2009/08/calling-api-functions.html

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

1

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

1
2

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

1
2

3

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

[some winAPI]

1
2

3

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

[some winAPI]

1
2

3 4

Typical SHFA Based
Payload

[—SHFA—][the actual payload logic]

[some winAPI]

1
2

3 4

5, Continue to 2 until done

Defeating SFHA

• EMET

• Piotr Bania Phrack 63:15 // HAVOC - POC||GTFO
12:7

EMET Caller/EAF(+)
• EAF(+)

• Introduced: 2010/2014(+)

• Protect reading KERNEL32/NTDLL and
KERNELBASE(+)

• Caller

• 2013

• Block ret/jmp into a winAPI (Anti/rop) for
critical functions

EMET is EOL

• Supported through July 31, 2018

• Still works**

• Re-introduced in Windows RS3

** Depends on threat model

Tor Browser Exploit
vs EMET

Bypassing EMET
EAF(+)

• 2010: Berend-Jan Wever (Skypher Blog) - ret-2-
libc via ntdll

• 1/2012 Piotr Bania - Erase HW Breakpoints via
NtContinue

• 9/2014 - Offensive Security - EAF+ bypass via
EMET function reuse calling ZwSetContextThread
directly

http://web.archive.org/web/20101125174240/http://skypher.com/index.php/2010/11/17/bypassing-eaf/
http://piotrbania.com/all/articles/anti_emet_eaf.txt

https://www.offensive-security.com/vulndev/disarming-emet-v5-0/

Bypassing EMET
Caller

2/2014 - Jared Demot - Demo’ed a payload that
directly used LoadLibraryA (LLA)

https://bromiumlabs.files.wordpress.com/2014/02/bypassing-emet-4-1.pdf

IAT Based Payloads
in BDF

• May 30, 2014

• Added IAT based payloads/shellcode to BDF

• Directly used IAT API thunks

• This bypassed EMET Caller/EAF(+) checks

Position Independent
IAT Shellcode

• Dec, 2014

• 12/2003 - Skape (M. Miller) Understanding Windows
Shellcode

• 2005 - Piotr Bania - IAT Parser - Phrack 63:15

• 1997 - Cabanas Virus - 29A

http://www.hick.org/code/skape/papers/win32-shellcode.pdf

http://phrack.org/issues/63/15.html

http://virus.wikidot.com/cabanas

Emailed the EMET Team

¯_()_/¯

IAT Based Stub

• LoadLibraryA(LLA)/GetProcAddress(GPA) in Main
Module

https://gist.github.com/secretsquirrel/2ad8fba6b904c2c952b8

IAT Based Stub(s)

• LoadLibraryA/GetProcAddress in Main Module

• LoadLibraryA/GetProcAddress in a loaded Module
(dll)

GetProcAddress Only
Stub

GetProcAddress Only
Stub

GetProcAddress LoadLibraryA

GetProcAddress Only
Stub

GetProcAddress LoadLibraryA

LoadLibraryA.Handle = GetProcAddress(Kernel32.addr, ‘LoadLibraryA’)

GetProcAddress Only
Stub

GetProcAddress LoadLibraryA

LoadLibraryA.Handle = GetProcAddress(Kernel32.addr, ‘LoadLibraryA’)

Push eax; LLA is in EAX
mov ebx, esp; mov ptr to LLA in ebx

…
call [ebx]

IAT Based Stub(s)

• LoadLibraryA(LLA)/GetProcAddress(GPA) in main
module

• LLA/GPA in a loaded module (dll)

• GPA to LLA in main module

• GPA to LLA in loaded module

System Binaries/DLLs with
LLAGPA or GPA in IAT

LLAGPA GPA

XPSP3 1300 5426

VISTA 645 26855

WIN7 675 48383

WIN8 324 31158

WIN10 225 50522

FireEye Flash Malware w/
EMET Bypass Jun 06, 2016

https://www.fireeye.com/blog/threat-research/2016/06/angler_exploit_kite.html

POC: https://github.com/ShellcodeSmuggler/IAT_POC

https://www.okta.com/blog/2016/07/the-emet-serendipity-emets-ineffectiveness-against-non-exploitation-uses/

What now?

• July 2016

• More payloads

• Many MetaSploit payloads were based off of Hash
API stub

• Much work

• Some ideas

Part II -
Development

Two Ideas

• Remove SFHA and replace it with X

• Build something to rewrite the payload logic for
use with an IAT parsing stub

REWRITE ALL THE THINGS

MSF Winx86 Payloads
Follow a pattern

https://github.com/rapid7/metasploit-framework/blob/master/external/source/shellcode/windows/x86/src/block/block_recv.asm

Workflow

• Take Input via stdin or from file

• Disassemble

• Capture blocks of instructions

• Capture API calls

• Capture control flow between two locations

• Protect LLA/GPA registers from being clobbered

LOE

LOE

• Five days straight at about 12-15 hour days

LOE

• Five days straight at about 12-15 hour days

• When I solved one problem, 2-3 more appeared

LOE

• Five days straight at about 12-15 hour days

• When I solved one problem, 2-3 more appeared

• There is a point where a manual rewrite would
have been easier - I crossed it

LOE

• Five days straight at about 12-15 hour days

• When I solved one problem, 2-3 more appeared

• There is a point where a manual rewrite would
have been easier - I crossed it

• !BURN IT DOWN!

Next idea

Next idea

[—SFHA—]

Next idea

[the actual payload logic][—SFHA—]

Next idea

[the actual payload logic]

Next idea

[the actual payload logic][IAT Stub]

Next idea

[the actual payload logic][IAT Stub] [offset table]

Some requirements

• Support Read/Execute Memory

• Try to keep it small

• Support any Metasploit Shellcode that uses SFHA

Workflow
• Take Input via stdin or from file

• Disassemble

• Capture blocks of instructions

• Capture API calls

• Build a lookup/offset table

• Find an appropriate IAT for the EXE

• OUTPUT

Offset Table
Approach

Offset Table
Approach

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]

Offset Table
Approach

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

Offset Table
Approach

b'RtlExitUserThread\x00ExitThread\x00kernel32\x00WinExec\x00GetVersion\x00ntdll\x00'

[876f8b31][XX][XX][a2a1de0][XX][XX][9dbd95a6] [XX][XX]
DLL API

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

1

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

1
2

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

[some winAPI]

1
2

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

[some winAPI]

1
2

3

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

[some winAPI]

1
2

3
4

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

[some winAPI]

1
2

3
5

4

The new workflow

[IAT Stub][Lookuptable][the actual payload logic]

[some winAPI]

1
2

3
5

6, Continue to 2 until done

4

LOE

• The initial POC took < 12 hours

• Adding the workflow and stubs:12 hours

• Finalizing the tool: ಠ_ಠ

• But I’m happy "

About those API
Hashes

About those API
Hashes

• They are now meaningless

About those API
Hashes

• They are now meaningless

• AVs depend on them for signatures

About those API
Hashes

• They are now meaningless

• AVs depend on them for signatures

• What happens if we mangle them?

AV Demo

DEMO: https://youtu.be/p3vFRx5dur0

Introducing FIDO

Introducing FIDO

Introducing FIDO

Issues with some
DLLs

System Binaries/DLLs with
LLAGPA or GPA in IAT

LLAGPA GPA

XPSP3 1300 5426

VISTA 645 26855

WIN7 675 48383

WIN8 324 31158

WIN10 225 50522

API-MS-WIN-CORE*.dlls

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

API-MS-WIN-CORE*.dlls
• MINWIN

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

API-MS-WIN-CORE*.dlls
• MINWIN

• These dlls redirect to the actual implementation
of the windows API

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

API-MS-WIN-CORE*.dlls
• MINWIN

• These dlls redirect to the actual implementation
of the windows API

• Existed since win7

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

API-MS-WIN-CORE*.dlls
• MINWIN

• These dlls redirect to the actual implementation
of the windows API

• Existed since win7

• GPA is implemented via API-MS-WIN-CORE-
LIBRARYLOADER-*.DLL

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

API-MS-WIN-CORE*.dlls
• MINWIN

• These dlls redirect to the actual implementation
of the windows API

• Existed since win7

• GPA is implemented via API-MS-WIN-CORE-
LIBRARYLOADER-*.DLL

• Normally used in system dlls

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

API-MS-WIN-CORE*.dlls
• MINWIN

• These dlls redirect to the actual implementation
of the windows API

• Existed since win7

• GPA is implemented via API-MS-WIN-CORE-
LIBRARYLOADER-*.DLL

• Normally used in system dlls

• Can be called by userland applications via IAT
parsing

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

Because it is in…

Because it is in…

Kernel32.dll

SAY AGAIN?

SAY AGAIN?

• We just need GPA in any DLL Import Table to
access the entire windows API

SAY AGAIN?

• We just need GPA in any DLL Import Table to
access the entire windows API

• Since win7, GPA has been in Kernel32.dll Import
Table

SAY AGAIN?

• We just need GPA in any DLL Import Table to
access the entire windows API

• Since win7, GPA has been in Kernel32.dll Import
Table

• We’ve had a stable EMET EAF(+)/Caller bypass
opportunity since Win7 (works for win7 - win10)

Tor Exploit w/My
Stub vs EAF+/Caller

DEMO: https://youtu.be/oqHT6Ienudg

Updates

• These payloads were introduced at REcon Brussels
- Jan 2017

• For DEF CON 2017 - 64bit payloads are being
released.

Part III -
Mitigations

My Reaction

My Reaction

How Does the IAT
Filter Work

• The pointer to the Import Name in the import
table no longer points to:

• GetProcAddress

• LoadLibraryA

• The API Thunk is still there

• No Import name == driving blind

Missed an Import

Missed an Import

GetProcAddressForCaller
(GPAFC)

• Introduced in win8

• Exported by kernelbase.dll

• Imported by Kernel32.dll

• Works very similar to GPA

• Not filtered by the IAT Filter

GPA(‘DLLHandle’, ‘API String’)
==

GPAFC(‘DLLHandle’, ‘API String’, 0)

Example in FIDO:
ExternGPAFC

Now what?

Think About It

Go Directly to
GetProcAddress

Process Memory

Go Directly to
GetProcAddress

PEB.imagebase GetProcAddress

Process Memory

Go Directly to
GetProcAddress

x
PEB.imagebase GetProcAddress

Offset - Version(s) Dependent

Process Memory

Example Dev Workflow
• Find GetProcAddress (GPA) in process space

(application specific)

• No system DLLs

• If multiple versions have the same exploit

• find a lynchpin GetProcAddress location that is
the same across all versions

• Else, diff the GPA target binary

• Use the diff locations in the payload to ID the
version to the corresponding GPA offset

Examples in FIDO:
OffsetGPA and
ExternOffsetGPA

Questions?

• Get the code: https://github.com/secretsquirrel/
fido

• Thanks: @SubTee, @FreedomCoder, @Wired33,
@__blue__

