
1

THE ADVENTURES OF AV
AND THE LEAKY SANDBOX

A SafeBreach Labs research paper by
Amit Klein, VP Security Research, SafeBreach and
Itzik Kotler, co-founder and CTO, SafeBreach

July 2017

2

ABSTRACT

We describe and demonstrate a novel technique for exfiltrating data from highly secure enterprises which employ strict
egress filtering - that is, endpoints have no direct Internet connection, or the endpoints’ connection to the Internet is
restricted to hosts required by their legitimately installed software. Assuming the endpoint has a cloud-enhanced anti-virus
product installed, we show that if the anti-virus (AV) product employs an Internet-connected sandbox as part of its cloud
service, it actually facilitates such exfiltration. We release the tool we developed to implement the exfiltration technique,
and we provide real-world results from several prominent AV products (by Avira, ESET, Kaspersky and Comodo).

Our technique revolves around exfiltrating the data inside an executable file which is created on the endpoint (by the main
malware process), detected by the AV agent, uploaded to the cloud for further inspection, and executed in an Internet connected
sandbox. We also provide data and insights on those AV in-the-cloud sandboxes. We generalize our findings to cover on-premise
sandboxes, use of cloud-based/online scanning and malware categorization services, and sample sharing at large. Lastly, we
address the issues of how to further enhance the attack, and how cloud-based AV vendors can mitigate it.

INTRODUCTION

Exfiltration of sensitive data from a well-protected enterprise is a major goal for cyber attackers. Network-wise, our
reference scenario is an enterprise whose endpoints are not allowed direct communication with the Internet, or an
enterprise whose endpoints are only allowed Internet connections to a closed set of external hosts (such as Microsoft
update servers, AV update servers, etc.). And since the organization is “well protected”, it’s quite likely to have mandatory
anti-virus (AV) security software installed on every endpoint. Interestingly, many AV vendors advertise “cloud AV” offerings,
in which the endpoint AV software consults a cloud service about its local findings. Note that when employing a “cloud
AV”, even for endpoints that are completely restricted from accessing the Internet, the endpoints are still connected to an
internal network, and are allowed to send data over the internal network to an AV management server in the organization
(which is allowed to connect to the AV cloud). This architecture, therefore, is not truly air-gapped.

There are various exfiltration techniques already disclosed, and in fact, our 2016 paper “In Plain Sight: The Perfect

Exfiltration” provides both references to comprehensive lists of such techniques, and a new set of such techniques.
However, all those techniques assume the endpoint can connect to arbitrary Internet hosts, or assume lax security at the
enterprise, or some requirements on the hosts that are used for exfiltration. In the current paper, we look at a case wherein
these assumptions do not hold, and particularly wherein the direct Internet connection, if allowed at all, is limited to a small
set of hosts (those that are required for proper functioning of legitimately installed software on the endpoint). We show
that even under these restrictions, it is still possible under some likely conditions, to exfiltrate data to the outside world.

Our contribution:
1. We describe an innovative technique to exfiltrate data using cloud-based AV sandboxing, that can work even if the endpoint

is prevented from directly connecting to the Internet, or when it can only connect to the hosts necessary for the functioning
of the legitimately installed software on the endpoint.

2. We provide a free, open source tool which implements our technique.
3. We provide real world results of testing the technique against leading AV products.
4. We provide some insights regarding the nature of cloud-based AV sandboxes from leading AV vendors.
5. We describe extensions to our original technique (not yet implemented) that can improve the success rate of the technique.

https://go.safebreach.com/rs/535-IXZ-934/images/Whitepaper_Perfect_Exfiltration.pdf
https://go.safebreach.com/rs/535-IXZ-934/images/Whitepaper_Perfect_Exfiltration.pdf

3

RELATED WORK

Exfiltration in general
As mentioned above, there is quite a large corpus of research around exfiltration techniques in general, such as:

• “Covert Channels in TCP/IP Protocol Stack” by Aleksandra Mileva and Boris Panajotov
• "A survey of covert channels and countermeasures in computer network protocols" by Sebastian Zander, Grenville

Armitage and Philip Branch
• "Covert timing channels using HTTP cache headers" by Denis Kolegov, Oleg Broslavsky and Nikita Oleksov

Our research differs from the methods described by these papers by addressing the challenge of exfiltrating from endpoints
which are not directly connected to the Internet, or have very limited connection to the Internet.

Exfiltration from disconnected endpoints
There is a lot of research published recently about exfiltrating data from endpoints over non-network media, e.g.:

• ” LED-it-GO Leaking (a lot of) Data from Air-Gapped Computers via the (small) Hard Drive LED” by Mordechai Guri,

Boris Zadov, Eran Atias and Yuval Elovici,

• "DiskFiltration: Data Exfiltration from Speakerless Air-Gapped Computers via Covert Hard Drive Noise” by

Mordechai Guri, Yosef Solewicz, Andrey Daidakulov and Yuval Elovici

• ”BitWhisper: Covert Signaling Channel between Air-Gapped Computers using Thermal Manipulations” by Mordechai

Guri, Matan Monitz, Yisroel Mirski and Yuval Elovici, etc.

These methods tackle the challenge of a truly isolated machine (“air gapped”) on one hand, but typically require an attacker
presence physically near the endpoint on the other hand. Our research addresses a slightly different question – the
endpoint may be indirectly connected to the Internet (through other machines which are allowed to access the Internet),
or may be allowed to connect to a closed set of hosts, but on the other hand, we are not restricted to physical proximity,
and can carry out exfiltration to practically any other Internet-connected host.

Exfiltration via 3rd party sites
An IPID-based exfiltration method such as “Covert Communications Despite Traffic Data Retention” by George Danezis
can use one of the allowed Internet hosts (e.g. Microsoft’s update server) to exfiltrate data. However, this method is
nowadays practically outdated since modern operating systems do not implement a globally incrementing IPID generator.
Moreover, the whitelisted sites are likely to be very busy, therefore the IPID-leaking method will encounter a lot of noise
and will likely be impractical.

http://eprints.ugd.edu.mk/10284/1/surveyAMBPselfArc.pdf
http://caia.swin.edu.au/cv/szander/publications/szander-ieee-comst07.pdf
http://docslide.us/internet/covert-timing-channels-using-http-cache-headers.html
https://arxiv.org/ftp/arxiv/papers/1608/1608.03431.pdf
http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/cover.pdf

4

Another exfiltration using a 3rd party site would be to send a TCP SYN packet to an open port at the 3rd party site, with a
source IP pointing at an attacker host (source IP spoofing). The 3rd party site will respond in a TCP SYN+ACK packet sent
“back” to the source IP – i.e. to the attacker host. The payload can be embedded in the TCP ISN (initial sequence number)
and/or the TCP source port, both of which are returned in the SYN+ACK packet.

A similar approach can be to send a UDP packet (request) to an open UDP port at the 3rd party site, again with a source IP
pointing at an attacker host (source IP spoofing). The 3rd party site will respond with a UDP response packet sent “back” to
the source IP. The payload can be embedded in the source port, or as part of the query data, if that can be deduced from
the response data (for example, a DNS response contains the DNS query). However, high security enterprises may employ
IP egress filtering, and thus drop the outbound endpoint packets whose IP addresses do not belong to the enterprise. In
addition, NAT/PAT devices may alter the source port and source IP address and thus eliminates this channel. Moreover,
TCP/UDP-aware gateways/firewalls may terminate a TCP connection and establish their own, thus again eliminating this
channel.

Another approach is demonstrated in “In Plain Sight: The Perfect Exfiltration” by Amit Klein and Itzik Kotler. There, the
authors describe exfiltration based on subtle manipulations of the application state in a 3rd party site. This approach does
not work well with the hosts to which an endpoint is allowed to connect (e.g. software update hosts), since these hosts
don’t need a caching layer in front of them, and their application is not rich in states that can be easily manipulated.

Triggering av products
In “Art of Anti Detection 1 – Introduction to AV & Detection Techniques” , Ege Balci provides an extensive list of triggering
behaviors for av products. Our technique uses such triggers (we experimented with 2 triggers but the technique can make
use practically of each and every trigger listed) – our innovation is not in coming up with ways to trigger AV products, but
rather abuses the actions some AV products take once the trigger is fired

Research on sandboxes
In “AVLeak: Fingerprinting Antivirus Emulators Through Black-Box Testing”, Jeremy Blackthorne, Alexei Bulazel, Andrew
Fasano, Patrick Biernat and Bülent Yener describe a way to fingerprint an AV emulation sandbox as a black-box. They do
not describe a way to exfiltrate data from an endpoint machine.
In Google’s Project Zero entry “Comodo: Comodo Antivirus Forwards Emulated API calls to the Real API during scans” , Tavis
Ormandy describes bugs in Comodo Antivirus which allow an attacker to run code in elevated privileges, and to exfiltrate data
out of the endpoint. However, the underlying assumption there is that the endpoint is allowed to connect to arbitrary Internet
hosts. Our concern is with scenarios where such connections are not allowed, usually via an organization firewall (i.e. a gateway
separate from the endpoints).

https://go.safebreach.com/rs/535-IXZ-934/images/Whitepaper_Perfect_Exfiltration.pdf
https://pentest.blog/art-of-anti-detection-1-introduction-to-av-detection-techniques/
https://www.usenix.org/system/files/conference/woot16/woot16-paper-blackthorne_update.pdf
https://bugs.chromium.org/p/project-zero/issues/detail?id=769

5

In “Your sandbox is blinded: Impact of decoy injection to public malware analysis systems” , Katsunari Yoshioka, Yoshihiko
Hosobuchi, Tatsunori Orii and Tsutomu Matsumoto describe a technique to fingerprint a public-facing sandbox. Like
AVLeak, they do not concern themselves with exfiltrating data from a regular (endpoint) machine.

In “Enter Sandbox – part 8: All those… host names… will be lost, in time, like tears… in… rain” Hexacorn Ltd. provides a
list of 800+ computer names allegedly used in sandboxes, thus creating a de-facto fingerprinting database for sandboxes.

In “Sandbox detection: leak, abuse, test”, Zoltan Balazs describes how to extract sandbox fingerprints (e.g. screen
resolution, computer name, software installed, CPU type and count, memory size, mouse movements, etc.)

In “Art of Anti Detection 1 – Introduction to AV & Detection Techniques”, Ege Balci provides heuristics for sandbox
detection.

Our research studies exfiltration through AV sandboxes of data obtained from an endpoint. Fingerprinting the sandboxes
themselves wasn’t our main object, though we did observe several properties of AV sandboxes, and we share these in the
paper.

https://www.jstage.jst.go.jp/article/ipsjjip/19/0/19_0_153/_pdf
http://www.hexacorn.com/blog/2015/08/25/enter-sandbox-part-8-all-those-host-names-will-be-lost-in-time-like-tears-in-rain/
https://www.botconf.eu/wp-content/uploads/2015/12/OK-S02-Zoltan-Balazs-Sandbox_mapping_botconf.pdf
https://pentest.blog/art-of-anti-detection-1-introduction-to-av-detection-techniques/

6

BACKGROUND

We are interested in two network architectures that can be found in highly secure organizations:

Indirect Internet Access
The corporate has cloud-based AV agents deployed on all endpoints. The corporate has a central AV management server
(distributing updates and collecting samples and events) which is allowed to connect to the AV’s cloud service. All other
machines (endpoints) are prohibited from accessing the Internet. The access control can be enforced by a firewall/gateway
between the corporate’s LAN and the Internet. This firewall/gateway has a rule that prevents all machines except the AV
management server from accessing the Internet. It is assumed that spoofing TCP (or IP) traffic is impossible – e.g. the AV
management server is located in a different segment and the firewall/gateway employs strict ingress filtering.

In this architecture, the endpoints do not have any direct Internet access. Therefore, regular network-based exfiltration
methods are ineffective here. However, software on the endpoint can influence the AV management server (for example,
through the agent) and cause it to communicate with the AV cloud hosts. We will use this observation to construct an
exfiltration technique.

Limited Direct Internet Access
The corporate has cloud-based AV agents deployed on all endpoints. All endpoints are prohibited from accessing the
Internet, except for a closed set of hosts necessary for the functioning of the legitimately installed software on the
endpoints (e.g. the AV cloud hosts, Microsoft’s update servers, etc.). The access control can be enforced by a firewall/
gateway between the corporate’s LAN and the Internet. This firewall/gateway has a rule that prevents all machines from
accessing the Internet, except to a closed set of hosts.

In this architecture, the endpoints have very limited access to the Internet. Theoretically, one can exfiltrate data by sending
packets to one of the allowed Internet hosts (e.g. to a Microsoft update server), but this requires the attacker to also be
able to eavesdrop on the communication between the organization and the (Microsoft update) server. This is not feasible
for a non-state sponsored attacker, and thus it is out of scope of this paper. Alternatively, an endpoint can send IP packets
to one of the whitelisted hosts, thereby theoretically enabling the various "exfiltration via 3rd party sites" techniques
discussed above, but as we wrote there, none of these methods is effective nowadays for highly secure enterprises (with
egress filtering) and with the whitelisted Internet hosts.

Triggering an AV agent
AV products typically employ numerous behavioral rules that attempt to detect suspicious/malicious processes. Examples
for behavioral rules are:

• Writing to disk an image (file) which is known to be malicious (known malware/virus)
• Setting an auto-start entry (persistence)
• Injecting code into other processes

7

• Unpacking code in memory
• Connecting to known malicious hosts (known C&C)
• Making system level modifications (e.g. replacing system files/libraries, adding/changing entries in the hosts file,
 modifying the DNS settings)
• Making changes to the browsers, e.g. installing plugins, modifying the proxy settings, etc.

This is, of course, just a small subset of all possible triggers.
Once a process activity triggers the AV product, the image file of the process is marked as suspicious/malicious (and,
depending on the AV product, may be sent to the cloud for further inspection.)

Cloud AV sandboxing
We are going to abuse the cloud AV sandboxing feature that many AV vendors use. The rationale for this feature is that
it enables the AV vendor to offer lightweight agent software, and carry out the heavy-lifting security analysis work in
the cloud. Specifically, in such an architecture, the AV agent needs to conduct only basic security checks against other
processes and files, allowing for a grey area where a binary “malicious/non-malicious” decision cannot be determined
locally. A process/file falling into this grey area is sent to the cloud for further analysis, and a security decision is
obtained from the cloud (sometimes in near real time).
A sample that arrives at an AV cloud sandbox is typically executed there and its behavior is observed. The sandbox is
not a sensitive environment, therefore a malicious executable can be run there with no harm to real users or resources.
Based on the observed behavior, the AV vendor can arrive at a more educated decision about the nature of the sample
(i.e. whether it is malicious or not).

An AV cloud sandbox may be isolated from the Internet, or connected to it. There’s a good argument in favor of a
connected sandbox, as it allows the sample to run in a more “natural” environment. For example, an unknown file (which
is in fact a new malware dropper) can connect to its C&C server, download a secondary malware (such as the well-
known Zeus malware) and run it. The AV logic can then inspect the Zeus file and classify it is a known malware file, and
thus determine that the original sample is actually a malware dropper, hence it is malicious in itself. All this is impossible
when the AV cloud sandbox is isolated from the Internet.

Exfiltration methods from an Internet-connected machine
There are numerous ways to exfiltrate data from an Internet-connected machine, as mentioned in the “related work”
section. If stealth requirements are alleviated (e.g. when a one-time attempt is made), then exfiltration can be as simple
as connecting to an Internet host (owned/accessible by the attacker), e.g.:

• Sending HTTP/HTTPS request to the attacker’s host
• Forcing DNS resolution (for hostnames in a domain owned by the attacker, and where the attacker also controls the

authoritative name server for the domain)
• Sending email to an attacker mailbox (SMTP)
• Sending an IRC message
• Pinging (ICMP Echo) an attacker host
• Submitting (via HTTP/HTTPS) a comment in a popular web forum

8

This is, of course, merely a very small subset of all the possible ways to transmit data out of the machine.

EXFILTRATION THROUGH AV CLOUD SANDBOXES

We present a novel method of exfiltrating data from endpoints which are not directly connected to the Internet, or
whose connection to the Internet is limited to only those hosts needed for the functionality of its legitimately installed
software. Our technique requires the following:

• An AV product (agent) installed on endpoints, which submits to the AV cloud unknown/suspicious executable files:

 - Directly, via an Internet connection from the endpoint to the AV cloud; or

 - Indirectly, by sending the sample to an enterprise AV management server and having the latter submit the

 sample via a direct Internet connection to the AV cloud (in real time or in offline/batch mode), or manually via

 copying files (though a physical medium e.g. a USB stick) from the enterprise AV management server to an

 Internet-facing machine and submitting the files from there.

• The AV cloud service employs a sandbox which can directly connect to the Internet.

• The attacker’s process (malware) is running on the endpoint.

Our technique can exfiltrate data in this scenario even when the endpoint has a very limited Internet connection (e.g.
one which is not used by the user – such as limiting the connection to software update servers), and even when no
direct connection is allowed at all.

Details of the technique
The attacker process (called “Rocket”) contains a secondary executable (called “Satellite”) as part of its data. The Satellite
can be encrypted/compressed to hide the fact that it is another executable, thus the Satellite can be no more than a piece
of data in the Rocket memory space (and file) that does not jeopardize the Rocket.
The Satellite contains a placeholder for arbitrary data (“payload”) to be exfiltrated. The location of the placeholder should
be known to the Rocket, e.g. as an offset+length, or as magic-start/end markers, within the data of the embedded Satellite.

The attack proceeds as follows:
1. The Rocket collects the data (payload) it needs to exfiltrate.
2. The Rocket decrypts/decompresses the Satellite into its useful image in memory, and embeds the payload in a

designated area in the Satellite image. The payload can be compressed/encrypted to further ensure that it is not
suspicious by itself. The Rocket then writes the Satellite image to disk, as a file (henceforth, the "Satellite file").

3. The Rocket spawns the Satellite (from its file) as a child process.
4. The Satellite performs an intentionally suspicious action, such as persisting itself, or writing a known malware file to disk.
5. The endpoint AV product detects the suspicious action of the Satellite, possibly quarantines it, and sends its image

file to the AV cloud. Note that the Satellite file contains the payload.
6. The cloud AV executes the Satellite file in an Internet-connected sandbox.
7. The Satellite process can now try any of the Internet-based exfiltration methods to exfiltrate the (encrypted/

compressed) payload to the attacker, e.g. by sending it in an HTTP/HTTPS POST request to an attacker host, or by
breaking it into small pieces, hex-encoding it and using it as a DNS subdomain for DNS resolution requests whose
domain is owned by the attacker.

9

Note that this attack is “noisy” in the sense that the AV product will flag the Satellite file as suspicious and as such this
may have visible impact on the user (see Figures 1-2 below), as well as visibility in logs and records. However, for a one
time exfiltration attack this will already be too late, as the payload will already be traveling to the cloud by the time this
incident is investigated by flesh-and-blood analysts.

RESULTS WITH LEADING AV PRODUCTS

In February-March 2017, we ran tests against multiple AV products. We provide details of the tests and results in this
section.

Test setup
We built Rocket-Satellite combinations as explained above. The code was written in C/C++ and compiled in Microsoft VC
2015 – Rocket was compiled for an x86 target, and Satellite – mostly for an x64 target, but sometimes for an x86 target
(this was a random choice, we don’t place too much weight on the target architecture). For simplicity, the Satellite and the
payload were not encrypted or compressed. The payload area was marked with “magic-start” and “magic-end” markers.
For best results, The Rocket executable file should be placed in in one of the regular folders, such as the “Desktop” folder
(but not in the “Downloads” folder which is probably subject to different AV policies).

Rocket collects data from the machine (in out proof of concept – the machine name, and additionally some hard-wired
short string that we used to identify the exact test we ran), prepares the Satellite per above, writes the Satellite to the
current working directory and runs it. It should be noted that the due to the way they are created (with experiment-specific
strings), each Satellite file was unique, i.e. had a unique MD5/SHA1/SHA2 hash signature.

For triggers (Satellite actions), we chose two very simple triggers (each was tested on its own):

 1. Writing the EICAR file to disk. The EICAR file is a de-facto standard file that deliberately triggers AV products .
 This is done by opening a file named “daemon.com” in the current working directory, and writing the 68 bytes of the

EICAR data to this file using the C runtime library function fwrite().
 2. Moving the Satellite image file to the user’s startup folder (%USERPROFILE%\AppData\Roaming\Microsoft\

Windows\Start Menu\Programs\Startup) as “foo.exe”, overriding any existing “foo.exe” file. This is done using the
DeleteFile() and MoveFile() WinAPI calls.

For exfiltration, we chose two methods, both are attempted in the same Satellite run:

 1. DNS-based exfiltration. The Satellite encodes the payload (using hex-encoding), then breaks it into chunks that fit
 into DNS labels, and exfiltrates each chunk as a subdomain in a host-resolution query for a domain owned by the
 attacker (so eventually the query arrives at the authoritative DNS server run by the attacker). The resolution request is

carried out via invoking the Windows Socket library function getaddrinfo() or gethostbyname().
 2. HTTP-based exfiltration. The Satellite sends the payload as-is to the attacker's Internet host in an HTTP POST

request body. This is done using WinINet’s HttpOpenRequest() and HttpSendRequest().

Free open source code for the above implementation is available in the GitHub repository at https://github.com
/safebreach-labs/spacebin

http://www.eicar.org/86-0-Intended-use.html

10

Test results
We checked 10 products out of the top 11 anti-virus products from the vendor list in OPSWAT’s “Antivirus and

Compromised Device Report: January 2015”. This is their last report on pure Anti-Virus vendors. We could not test
SpyBot due to research time constraints.

The following table summarizes our results. Note that for products that are marked “-“, it only means that we could
not exfiltrate the payload via the combination of the two simple triggers we used, and the two naïve exfiltration
techniques we implemented. It does not mean that other combinations cannot potentially succeed for these products.

Product Version Trigger Exfiltration Method Success

Avast Free
Antivirus

 12.3.2280 -

Microsoft
Windows
Defender

 Client v. 4.10.14393.0
Engine v. 1.1.13407.0 -

AVG
Build 1.151.2.59606
Framework v.
1.162.2.59876

-

Avira Antivirus
Pro

 15.0.25.172 Persistence DNS, HTTP Yes

Symantec
Norton Security

22.8.1.14 -

McAfee Cloud
AV

 0.5.235.1 -

ESET NOD32
Antivirus

 10.0.390.0 EICAR DNS Yes

Kaspesrky Total
Security 2017

 17.0.0.611(c) Persistence DNS, HTTP Yes

Comodo Client
Security

 8.3.0.5216 Persistence DNS, HTTP Yes

BitDefender
Total Security
2017

Build 21.0.23.1101
Engine v. 7.69800 -

11

As can be seen, 4 major Anti-Virus products (Avira, ESET, Kaspersky and Comodo) out of 10 were positively shown
to facilitate exfiltration of data from “isolated” endpoints.

Insights on AV sandboxes
We encountered 44 different sandbox instances from 22 templates. In general, they belong to 10 classes, based on their
computer name:

namePC (1 template, 13 instances: REYNAPC, MALVAPC, ELEANOREPC, WRIGHTPC, BRIAPC, JORIPC, GABBIPC,
HELSAPC, MAMEPC, SHARAIPC, ARACHONPC, FLORIANPC, EDITHPC) – In this class/template, the computer
name comprises of a person's first name followed by “PC”. This class is operated by ESET (its DNS queries come from
an IP owned by ESET). All machines encountered share some basic properties such as disk volume (e0b2a963),
performance counter frequency (100MHz) and MAC address prefix (00:1B:21:13:37:xx – the last byte varies). HTTP
traffic to the Internet is blocked, but DNS is enabled.

something-PC (11 templates, 15 instances: WIN7-PC, ROGER-PC, DAVID-PC, ADMIN-PC, APIARY7-PC, ANTONY
PC, LUSER-PC, PERRY-PC, KLONE_X64-PC, 0M9P60J5W-PC, MIKI-PC) – each template in this class is different
(different CPU, different clock speed, different MAC address, different disk volume number).
The template 0M9P60J5W-PC had 5 instances (different computer/user/domain names but all exhibit the same
properties). All templates use IPs in consumer ISPs to connect to the Internet. Usually the username is identical to the
computer name, but for ROGER-PC we also encountered cases wherein the username was a seemingly random string of
alphanumeric characters. This class is operated by Comodo and/or Kaspersky and/or Avira.

C-TT (2 templates: C02TT with 4 instances: C02TT22, C02TT26, C02TT36 and C02TT18; C06TT – one instance,
C06TT43) – this class is used by Avira.

ZGXTIQTG8837952 (1 template, 4 instances) – this class is used by Comodo. In one case, we encountered it behind
TOR.

Figure 1 - ESET NOD32 Antivirus

notification (writing EICAR file to disk)
Figure 2 - Kaspersky Total Security 2017

notification (persistence in the Startup folder)

12

spurtive (2 templates – "spurtive" and "circumstellar", one instance each) – used by Comodo.

5 one-template, one instance classes (ABC-WIN7, PC, WIN-U9ELNVPPAD0, PC-4A095E27CB, WIN-LRG949QLD21
Not much information is available since each was encountered only once or twice.

It appears that not a lot of effort is made to hide the identity of the sandboxes from the processes running on them.
Most of the time, the names are fixed, and even if not, the disk volume serial number is not changed. In some cases, the
MAC address clearly indicates a virtualized environment (VMware). The Performance Counter is also an indicator for
virtualization in some cases (see http://www.securitygalore.com/site3/wpc-frequency-vm-os-matrix for details of this
technique).

It is also noteworthy that several sandbox templates (e.g. “ROGER-PC”) are shared (or OEMed) between several players.
This is clear in the case of “ROGER-PC” (Comodo, Kaspersky and Avira), but can be deduced in the case of “BRIA-PC”
and “JORI-PC” – both were only observed being used by Comodo, but their DNS traffic is coming from an IP owned by
ESET. This may indicate for example, that Comodo uses third party AV engines/services to help evaluate unknown files.
The full details of the sandboxes we encountered are provided in the appendix.

Additional observations:

• Reaction time (time between sample upload and exfiltration) of sandbox execution varies from minutes to hours.
• In some cases (ROGER-PC, ANTONY-PC) we noticed that sometimes the sandbox prevented the investigated process
 from accessing the environment variables.
• It appears that additional sandbox executions sometime took place days and even weeks after the sample was
 submitted. We suspect these were related to either batch processing/re-evaluation, or due to analysts manually
 investigating the samples.
• In some cases, we noticed that the sandbox ran the Satellite before the data was “burned” into it by the Rocket. Our
 theory is that the AV product statically scanned the Rocket file/process, discovered the embedded executable

(Satellite), extracted it as-is and executed it.

ON-PREMISE AV SANDBOXES

Some AV vendors offer an alternative to cloud AV sandbox in the form of an on-premise sandbox, in which the suspicious
executable can be run safely. In this configuration, the attack may still be carried out, provided that:

• The sandbox allows outbound (Internet) traffic of some sort; and

• The enterprise network configuration allows outbound (Internet) traffic from the sandbox of at least one of the
 protocols/traffic types allowed by the sandbox

We did not experiment with on-premise AV sandboxes. Even if we could find AV on-premise sandboxes that allow
outbound traffic, the impact would be determined on a customer-by-customer basis as it depends on the enterprise
network configuration as it applies to the sandbox.

Nevertheless, enterprises should be aware of this attack variant.

13

CLOUD-BASED ANALYSIS SERVICES

There are several online services that offer analysis of binaries – either by subjecting them to multiple AV products, or by
running proprietary malware analysis logic. Assuming the attacker knows that such services are used (manually, or as a
backend to other security products/services) in the attacked enterprise, the attacker can use the same technique described
above to spawn a binary with embedded enterprise data to be run in the cloud by the online service and exfiltrate the
enterprise data. In this case, while the online service facilitates the attack, it is not a vulnerability in the online service since
there’s no expectation from the service to prevent exfiltration.

Google VirusTotal (https://www.virustotal.com/) was tested with a vanilla (non-triggering) Satellite and with the two
triggering Satellites, just to observe if any of its sandboxes are connected to the Internet. Indeed, we got back sandbox
fingerprints from sandbox templates ROGER-PC (DNS and HTTP), ANTONY-PC (DNS and HTTP), VVHMQ-PC (DNS, HTTP)
,ABC-WIN7 (DNS, HTTP), PC (DNS, HTTP), ADMIN-PC (DNS, HTTP), PERRY-PC (DNS, HTTP), PC 4A095E27CB (DNS,
HTTP), LUSER-PC (DNS, HTTP), APIARY7-PC (DNS, HTTP), MIKI-PC (DNS, HTTP) and MAMEPC (DNS). This is possibly due
to VirusTotal’s scanning with Avira and/or ESET and/or Comodo and/or Kaspersky, and/or by having triggered another cloud
based product which we either didn’t test, or failed to trigger.

Joe Security’s Joe Sandbox Cloud - File Analyzer (https://www.file-analyzer.net/) was tested with a vanilla Satellite and
was observed to leak via a single sandbox (DNS only, limited to 10 DNS queries). The File Analyzer sandbox we encountered
has the environment variable "COMPUTERNAME" set to "226533".

Payload Security’s Hybrid Analysis (https://www.reverse.it/) was tested with a vanilla Satellite and was observed to leak
via a single sandbox (HTTP and DNS). The Hybrid Analysis sandbox name we encountered is 7YTRfV35L8.

We conclude that when online scanning services VirusTotal, Hybrid Analysis and Joe Sandbox Cloud (and perhaps others)
are used to evaluate a binary (either manually or via a 3rd party product using these services as part of its backend),
exfiltration becomes possible.

VENDOR STATUS

Cloud AV sandboxes

• Avira – fixed on May 2nd (10h30m!).
• ESET – fixed on May 15th or before.
• Comodo – fixed on May 26th .
• Kaspersky - informed us on June 22nd that they WONTFIX, and provided the following workaround: "We recommend
 the product users who are concerned about this particular scenario to configure their security solution settings
 accordingly. There is an option in the product settings that disables files to be sent to the cloud sandbox. We assure the
 product users that disabling this option doesn’t affect effectiveness of detection."

Cloud-based analysis services

• VirusTotal – informed us on June 16th that they WONTFIX, and provided the following statement: "We have our
sandboxes on the internet on purpose to allow them communicate with C2 machines so we record the traffic".

• Joe Security – fixed on June 19th (3d11h!) and provided the following credit acknowledgement: "Improved ISIM max UDP
request config (@credits to Amit & Itzik from Safebreach)".

• Payload Security - informed us on June 23rd that "Payload Security chooses not to comment".

https://www.virustotal.com/
https://www.file-analyzer.net/
https://www.reverse.it/

14

IMPROVING AV CLOUD SANDBOXES

Clearly, one way to prevent this attack is to block AV sandboxes from accessing the Internet. Indeed, some cloud AVs
probably do exactly that.
Of course, this may be too strict in many cases, because it would be interesting to observe the Internet traffic of a
sample. Therefore, we can tune the defense technique a bit. We can only apply Internet blocking for samples not coming
from the Internet (i.e. binaries which are created on the machine, or which are obtained from another machine in the
enterprise). The reasoning is this – a sample which is obtained from the Internet (e.g. downloaded from a website) does
not carry any enterprise endpoint-specific payload, and as such, won’t be able to exfiltrate anything useful from the
endpoint when run in an Internet-connected sandbox.

The same applies for on-premise AV sandboxes.

FUTURE RESEARCH

The technique we developed has a lot of untapped potential. We speculate that there are many additional “supportive”
AV products which we have not marked as such due to the simplicity of our tests. Therefore, there are several options
for future research, such as:

• Test additional triggers – e.g. packing the Satellite code with a known packer, connecting to malware C&C, etc.
• Test additional exfiltration techniques – e.g. ping (ICMP), HTTPS, SMTP, IRC, connection to popular sites, etc.
• Improve the stealth of the Rocket-Satellite combination by compressing/encrypting the Satellite image inside
 the Rocket.
• A more robust alternative to AV triggering is to reverse engineer the protocol between the AV agent on the

endpoint and the AV cloud or the AV management server, and have the Rocket submit the sample (Satellite)
directly, without triggering any AV behavioral rule (and without visual cues to the user, and log artifacts).

CONCLUSIONS

We have demonstrated that cloud-based AV sandbox execution can be used to exfiltrate data from endpoint machines
by “burning” the data into the binary to be scanned in the cloud. In this way, even high security enterprises which
prevent their endpoints from directly accessing the Internet, or severely restricting Internet access to endpoints, can still
have their data exfiltrated. We demonstrated this technique successfully with the latest versions of Avira Antivirus Pro,
ESET NOD32 Antivirus, Kaspersky Total Security 2017 and Comodo Client Security. As part of this research we also
made some observations on the sandboxes used by these vendors, and commented on the ease of their detection.

We can generalize our findings and state that sharing an executable (suspicious/malicious sample) from the organization,
with the outside world in some manner (e.g. submitting the sample to a cloud analysis service or allowing such file
submission) can result in data exfiltration, unless there is confidence that the sample has arrived from outside the
organization and the file has not changed since its arrival.

ACKNOWLEDGEMENTS

We would like to thank Yoni Fridburg for his help in setting up the AV research lab.

15

APPENDIX – FINGERPRINTS OF ENCOUNTERED SANDBOXES

Computer name C02TT36/C02TT22/C02TT26/C02TT18
Class C-TT (template C02TT)
Used by Avira
IP 79.207.224.213 (Deutsche Telekom, Germany) /

87.162.248.42 (Deutsche Telekom, Germany)
Performance Counter Frequency 2825742
CPU Intel64 Family 6 Model 45 Stepping 7, GenuineIntel
Domain C02TT36/C02TT22/C02TT26/C02TT18
Username Administrator
MAC Random
Disk Volume Number a0e1740e
Additional Software Python TCL/TK

Computer name C06TT43
Class C-TT (template C06TT)
Used by Avira
IP 87.162.248.42 (Deutsche Telekom, Germany)
Performance Counter Frequency 10000000 (probably virtualized)
CPU Intel64 Family 6 Model 26 Stepping 5, GenuineIntel
Domain C06TT43
Username Administrator
MAC Random
Disk Volume Number 08266a95
Additional Software Python TCL/TK

Computer name WIN7-PC
Class Something-PC
Used by Comodo
IP 192.241.99.0/24 (B2 Net, USA)
Performance Counter Frequency 1955556
CPU Intel64 Family 6 Model 86 Stepping 2, GenuineIntel
Domain win7-PC
Username win7
MAC 08:00:27:60:0B:FB (Cadmus) / 08:00:27:63:DC:9F

(Cadmus), 08:00:27:2D:9B:64 (Cadmus)
Disk Volume Number c8e74c10
Additional Software Python

16

Computer name ROGER-PC
Class Something-PC
Used by Comodo, Kaspersky, Avira
IP 95.25.4.0/24 (Beeline, Russia)
Performance Counter Frequency 2734726
CPU Intel64 Family 6 Model 15 Stepping 11,

GenuineIntel
Domain Roger-PC
Username Roger
MAC 00:07:E9:E4:CE:4D (Intel)
Disk Volume Number 88fdb972
Additional Software Java

Computer name 0M9P60J5W-PC (and computer names derived from
“nDfFAdDKCg4D”, “wdqqwmpPw3rg”, “vvhMq”,
“DfCMD”) (differs from ROGER-PC only by perf. freq.
counter and username, domain and computer name)

Class Something-PC
Used by ?
IP 95.25.4.0/24 (Beeline, Russia)
Performance Counter Frequency 2543427
CPU Intel64 Family 6 Model 15 Stepping 11,

GenuineIntel
Domain 0M9P60J5W-PC (same as computer name)
Username 0M9P60J5W (computer name without “-PC”)
MAC 00:07:E9:E4:CE:4D (Intel)
Disk Volume Number 88fdb972
Additional Software Java

Computer name PERRY-PC
Class Something-PC
Used by ?
IP 23.253.228.196 (Rackspace, USA)
Performance Counter Frequency 10000000 (probably virtualized)
CPU Intel64 Family 6 Model 63 Stepping 2, GenuineIntel
Domain Perry-PC
Username Perry
MAC 08:00:27:76:47:D9 (Cadmus) / 08:00:27:43:D3:7A

(Cadmus)
Disk Volume Number 44cb6efe
Additional Software None?

17

Computer name DAVID-PC
Class Something-PC
Used by Comodo, Avira
IP 66.129.102.52 (Cythereon, USA)
Performance Counter Frequency 14318180
CPU Intel64 Family 6 Model 45 Stepping 2, GenuineIntel
Domain David-PC
Username David
MAC 00:50:56:88:00:BF (VMware) / 00:50:56:88:6C:C2

(VMware)
Disk Volume Number 24b8ccbd
Additional Software QuickTime

Computer name ADMIN-PC
Class Something-PC
Used by Comodo
IP 193.69.196.112 (Moss Ventelo, Norway), others
Performance Counter Frequency 2724345 / 2683330 / 2719648
CPU Intel64 Family 6 Model 62 Stepping 4, GenuineIntel
Domain Admin-PC
Username Admin
MAC 08:00:27:E5:DF:53 (Cadmus)/ 08:00:27:9D:E7:3A

(Cadmus)
Disk Volume Number 0ce74e66
Additional Software None?

Computer name APIARY7-PC
Class Something-PC
Used by ?
IP 130.207.203.2 (GAtech, USA), 165.254.103.0/24

(NTT America, USA)
Performance Counter Frequency 100000000
CPU Intel64 Family 6 Model 15 Stepping 11,

GenuineIntel
Domain Apiary7-PC
Username Apiary7
MAC 00:4F:49:22:33:* (unknown vendor)
Disk Volume Number 001fea32
Additional Software None?

18

Computer name ANTONY-PC
Class Something-PC
Used by Kaspersky
IP 95.25.4.0/24 (Beeline, Russia)
Performance Counter Frequency 100000000
CPU Intel64 Family 6 Model 15 Stepping 11,

GenuineIntel
Domain Antony-PC
Username Antony
MAC 00:FF:F2:F8:30:* (unknown vendor)
Disk Volume Number c0982f3b
Additional Software Perl, Python

Computer name LUSER-PC
Class Something-PC
Used by Avira
IP 188.99.236.30 (Vodafone, Germany), 88.71.118.98

(Vodafone, Germany), 88.73.120.59 (Arcor,
Germany)

Performance Counter Frequency 1757871
CPU Intel64 Family 6 Model 28 Stepping 10,

GenuineIntel
Domain luser-PC
Username luser
MAC 00:25:90:36:66:* (Super Micro), 00:25:90:65:3B:*

(Super Micro)
Disk Volume Number f210a4e5
Additional Software Strawberry Perl

Computer name MIKI-PC
Class Something-PC
Used by ?
IP 180.43.21.173 (NTT, Japan)
Performance Counter Frequency 14318180 (probably virtualized)
CPU Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Domain miki-PC
Username miki
MAC 00:AA:00:BB:A9:12 (Intel)
Disk Volume Number 6232faa4
Additional Software Python

19

Computer name KLONE_X64-PC
Class Something-PC
Used by Comodo
IP 103.208.85.0/24 (OneProvider, Singapore)
Performance Counter Frequency 14318180
CPU Intel64 Family 6 Model 45 Stepping 7, GenuineIntel
Domain Klone_x64-PC
Username admin
MAC 00:50:56:A1:*:* (VMware)
Disk Volume Number a8727cfb
Additional Software (note: defines environment variables MD5,

SAMPLEALTPATH, SAMPLEPATH)

Computer name REYNAPC/MALVAPC/ELEANOREPC/WRIGHTPC/BRIAPC/
JORIPC/GABBIPC/HELSAPC/SHARAIPC/MAMEPC/
ARCHONPC/FLORIANPC/EDITHEPC

Class namePC
Used by ESET, Comodo
IP 38.90.226.226, 91.228.165.165, 91.228.167.167

(ESET, Slovakia)
Performance Counter Frequency 100000000
CPU Intel64 Family 6 Model 2 Stepping 3, GenuineIntel
Domain namePC
Username Administrator
MAC 00:1B:21:13:37:* (Intel)
Disk Volume Number e0b2a963
Additional Software None?

Computer name Spurtive/circumstellar
Class spurtive
Used by Comodo
IP 71.138.0.0/16 (AT&T, USA)
Performance Counter Frequency 3579545
CPU Intel64 Family 6 Model 47 Stepping 2, GenuineIntel
Domain w7sb64-01
Username me
MAC 00:50:56:AA:5F:8A (VMware), 00:0C:29:B1:BC:6B

(VMware)
Disk Volume Number 3c2ef4f4/43a26e26
Additional Software None?

20

Computer name ABC-WIN7
Class ABC-WIN7
Used by ?
IP 207.102.138.40 (Telus, Canada)
Performance Counter Frequency 2127275/2148691
CPU Intel64 Family 6 Model 45 Stepping 7, GenuineIntel
Domain ABC-WIN7
Username abc
MAC 08:00:27:*:*:* (Cadmus)
Disk Volume Number 18ea1f18
Additional Software Python (also has environment variable PWD)

Computer name PC
Class PC
Used by ?
IP 8.40.242.11 (Horizon, USA)
Performance Counter Frequency 100000000
CPU AMD64 Family 15 Model 6 Stepping 1,

AuthenticAMD
Domain PC
Username Administrator
MAC 00:50:89:6F:40:BC (Safety Management Systems)
Disk Volume Number 98b68e3c
Additional Software None?

Computer name WIN-LRG949QLD21
Class WIN-LRG949QLD21
Used by ?
IP 95.25.4.233 (Beeline, RU)
Performance Counter Frequency 3320312
CPU Intel64 Family 6 Model 58 Stepping 9, GenuineIntel
Domain WIN-LRG949QLD21
Username [REDACTED]
MAC 00:0C:29:84:A9:47 (VMware)
Disk Volume Number 16074753
Additional Software None?

21

Computer name WIN-U9ELNVPPAD0
Class WIN-U9ELNVPPAD0
Used by Avira
IP 87.162.248.42 (Deutsche Telekom, Germany)
Performance Counter Frequency 14318180
CPU x86 Family 6 Model 26 Stepping 5, GenuineIntel
Domain WIN-U9ELNVPPAD0
Username User
MAC 00:0C:29:D1:79:F5 (VMware)
Disk Volume Number aeb34453
Additional Software None?

Computer name PC-4A095E27CB
Class PC-4A095E27CB
Used by Comodo
IP 72.12.209.146 (WinTek, USA)
Performance Counter Frequency 2272519/2243720
CPU Intel64 Family 6 Model 15 Stepping 11,

GenuineIntel
Domain PC-4A095E27CB
Username STRAZNJICA.GRUBUTT
MAC 00:11:2F:8F:A0:* (ASUSTek)
Disk Volume Number fc05c743
Additional Software None?

Computer name PC-4A095E27CB
Class ZGXTIQTG8837952
Used by Comodo
IP 62.102.148.67 (TOR exit node), 167.114.230.104

(RunAbove, France), 108.175.11.230 (1&1, USA)
Performance Counter Frequency 1957382
CPU Intel64 Family 6 Model 60 Stepping 3, GenuineIntel
Domain FS02
Username BLtJc5wjxpj53/8oymz9F1vH9bS/LPRbZ32WM6jf3
MAC 02:00:4C:4F:4F:50 (unknown vendor), 60:02:92:*:*:*

(Pegatron)
Disk Volume Number f0ecfa4a
Additional Software None? Environment variables: tHH, tMM, tSS,

tmpH, tmpM, tmpS, tnow, tnext

