
Linux-Stack Based V2X: White Paper

Duncan Woodbury, Nicholas Haltmeyer, and Robert Leale
{p3n3troot0r, ginsback}@protonmail.com, robertleale@canbushack.com

May 13, 2017

Abstract

Vehicle-to-vehicle (V2V) and, more generally, vehicle-to-everything (V2X) wireless com-

munication enables semi-autonomous driving via the exchange of state information between a

network of connected vehicles and infrastructure units. Following 10+ years of standards de-

velopment, particularly the IEEE 802.11p and 1609 family, a lack of available implementations

has prevented the involvement of the security community in development and testing of these

standards. Analysis of the WAVE/DSRC protocols in their existing form reveals the presence

of vulnerabilities which render the protocol unfit for use in safety-critical systems. We present

a complete Linux-stack based implementation of IEEE 802.11p and 1609.3/4 which provide

a means for hackers and academics to participate in the engineering of secure standards for

intelligent transportation.

1 Introduction

As vehicular ad-hoc networks (VANETs) will serve the purpose of disseminating messages related
to critical safety procedures, effective security is vital. A network compromise would allow an
adversary to launch a wide array of attacks. Current standards defining the implementation and use
of VANETs (IEEE 1609 – WAVE) use a certificate management system to assure the confidentiality
and authenticity of messages, as well as a misbehavior reporting system to maintain a network-wide
distributed trust of participants. If an attacker is able to compromise a peer, they have the ability
to launch a variety of attacks. Examples of these threats are as follows:

• Distributing false safety messages - Allows the attacker to obstruct or divert traffic by leading
vehicles to believe there is an upcoming accident or road block, beacon as an emergency
vehicle, or maliciously alert the driver of a fictitious imminent crash. The effects of this can
lead to significant cost in traffic congestion or even loss of life.

• Masquerading as a toll station - Allows the attacker to automatically collect payment infor-
mation from passing vehicles.

• Issuing false certificates - Allows the attacker to grant privileges and proliferate any of the
above attacks to colluding vehicles.

• Issuing false certificate revocations - Allows the attacker to effectively deny service until new
certificates can be authorized.

• Distributing false misbehavior reports - Allows the attacker to either grant undue trust to
malicious vehicles or deny service (and lead to the certificate revocation of) well-behaved
vehicles.

1.1 Contributions
We present a Linux kernel implementation of the IEEE 802.11p and 1609.3/4 standards, encom-
passing all features related to transmission/reception, channel switching, and message encoding/de-
coding, including a userspace utility facilitating the use of V2X with the SAE J 2735 basic message
dictionary to communicate with other Linux boxes and proprietary DSRC radios.

1

Figure 1: WAVE protocol stack [2].

1.2 Wireless Access in Vehicular Environments
Wireless Access in Vehicular Environments (WAVE) is a set of standards that form a comprehensive
framework for vehicle-to-vehicle communication. The base of the protocol is defined in IEEE
802.11p and defines operation on the 5.85 to 5.925GHz band [1].

The carrier wave structure is highly similar to that defined by 802.11p, using orthogonal fre-
quency division multiplexing (OFDM). The remainder of the specification is defined in IEEE 1609
and deals with message structure, security services, message aggregation, and forwarding within
the ad-hoc network. Figure 1 shows the OSI-like structure of WAVE.

Figure 2: WAVE Short Message specification [4].

Message encoding is defined in the WAVE Short Message (WSM). The collection of data struc-
tures and management entities involved in manipulating WSMs is the WAVE Short Message Pro-
tocol [2, 3, 4, 5]. See Figure 2 for a breakdown of WSM data fields. Additionally, WAVE Service
Advertisements are broadcast on a fixed interval, notifying peers of the car’s availability. See
Figure 3 for a breakdown of WSA data fields, and Figure 4 for WSA encapsulation within the

2

Figure 3: WAVE Service Advertisement specification [4].

Figure 4: WSA encapsulation in a WSM [4].

3

WSM.

1.3 Channel Switching
WAVE subdivides the bandwidth into 7 channels of 10MHz each. Channels are devoted to non-
safety messages, traffic efficiency messages, and critical safety messages. Channels marked for
longer range communications have a higher transmission power. The full range of channel settings
can be seen in Figure 5. As WAVE-capable devices need only use a single antenna, a switching
method is defined to receive control channel (CCH) and service channel (SCH) data frames at
intervals of 50ms each. A diagram of this switching procedure can be seen in Figure 6.

Figure 5: Channels subdivision and parameters [10].

Figure 6: Channel switching procedure [5].

1.4 WAVE Security
Security in WAVE is defined by IEEE 1609.2. This enables encryption and signing through a
certificate system. Certificates are chained against a trust anchor that demonstrates the authen-
ticity of each peer in the network. The central certificate authority acts as this trust anchor. The
final certificate is predicated on the validity of previous certificates. Each certificate has a set of
associated permissions.

WAVE supports a peer-to-peer certificate discovery mechanism. Using this, vehicles and road-
side units (RSUs) can request nearby peers to provide certificate information in the event that the
full chain cannot be verified, due to a lack of information. Upon being given all relevant data, the
management service can then determine if the certificate chain in question is valid.

2 Implementation

Our implementation is designed to integrate seamlessly with the Linux kernel networking subsys-
tem. The implementation of IEEE 802.11p works through modification of the mac80211, cfg80211,

4

and nl80211 standard Linux networking utilities, and by making very limited modifications to a
wireless hardware driver. In this case support is given for the Atheros ath9k and Realtek rtlwifi

drivers and compatible devices. Note that some effort was made to add support for IEEE 802.11p
to the mainline Linux kernel in 2014, although full functionality was not achieved1.

We will briefly summarize the changes made within the Linux kernel to implement IEEE
802.11p, and follow with an overview of the Linux kernel modules developed to implement IEEE
1609.3/4, and the usage of these via a modified version of the userspace standard networking
utility iw to enable transmission and reception of messages specified in the SAE J 2735 DSRC
message dictionary [13]. Complete descriptions and source code are available in our public GitHub
repository2.

2.1 Modifications of mac80211 subsystem
The following modifications were made to the mac80211 subsystem found within /net/wireless/mac80211:

1. Setting the wildcard BSSID during configuration of the networking interface when the BSSID
fetched does not match wildcard BSSID (FF:FF:FF:FF:FF),

2. Add a bit to list of hardware interface modes for specifying OCB mode

3. Check for the existence of concurrent network interfaces while configuring OCB mode and
return an error if any are discovered, and

4. Replace usage of certain OCB functions defined in ocb.c with those defined in ibss.c.

2.2 Modifications of cfg80211 utility
The following modifications were made to the cfg80211 utility found at /include/net/cfg80211:

1. Add ability to define channels with 5/10MHz bandwidth, and

2. Include 5/10MHz channels in comparison statements evaluating and returning channel state
information.

2.3 Modifications of nl80211 subsystem
The following modifications were made to the nl80211 utility defined at /include/uapi/linux/nl0211.h
and /net/wireless/nl80211.c:

1. Supporting usage and configuration of OCB mode by networking interface,

2. Add definition of 5/10MHz-wide channels, and

3. Allowing usage of ITS channels exclusively in OCB mode.

2.4 Additional modifications of wireless subsystem
The remaining changes to the Linux kernel networking subsystem, found at /net/wireless, in-
clude the following:

1. Specification of OCB mode in network interface configuration,

2. Definition of functions for additional configurations when in OCB mode,

3. Support for the deinitialization of OCB mode by network interface,

4. Setting the network interface BSSID to the wildcard BSSID when configuring for OCB mode,

5. Allowing usage of ITS channels exclusively in OCB mode, and

6. Addition of support for 5/10MHz-wide channels.
1https://lwn.net/Articles/611635/
2https://github.com/p3n3troot0r/Mainline-80211P/

5

2.5 Modifications needed for wireless hardware drivers
Limited modification of a compatible wireless driver from within /drivers/net/wireless is nec-
essary for all open-source COTS wireless hardware tested in this study. The initial driver chosen
was ath9k and additional support was later added for rtlwifi. The ITS channels within the
5GHz radio band, when not beyond the physical limitations of the hardware, are beyond the range
which most COTS wireless hardware is designed for. The following specific changes were made to
the ath9k and rtlwifi drivers to implement IEEE 802.11p:

1. Definition of OCB mode as a networking mode,

2. Incorporation of OCB mode into list of hardware capabilities,

3. Definition of ITS-G5 channels in 5.9GHz band,

4. Definition of and support for 5/10MHz-wide channels, and

5. Enable user modification of the hardware regulatory domain.

2.6 WAVE Short Message Protocol
The WAVE Short Message Protocol (WSMP) is implemented as a kernel module that provides
mechanisms for encoding and decoding WAVE message primitives. This includes the WSM, WSA,
Service Info Segment, Channel Info Segment, WAVE Routing Advertisement, and Information
Element Extension. Encoding/decoding is done with strict compliance to the standards. The
module also includes a utility for handling the WAVE-specific p-encoding.

After constructing a WSM to transmit, the message is encoded using wsmp_wsm_encode. This
returns a byte array that is passed along to the MAC/PHY layers.

2.7 Userspace tools for V2X stack
In order to use the V2X stack detailed herein with a standard Linux distribution, the CRDA and
wireless-regdb utilities must be modified to allow specification and seamless transition to use
of a custom regulatory domain. Modified versions of these utilities are available in the GitHub
repository referenced previously.

3 Conclusions

We have presented our implementation of V2X through the IEEE 1609 standards. With this, we
hope to engage and leverage the security community in the development of vehicular communica-
tions standards, and to facilitate growth and widespread interest in securing ITS infrastructure.
The V2X stack we provide is licensed under the GNU General Public License v2 to promote
collaborative development.

Example Usage

The following source code and output demonstrates the creation, encoding, and decoding of a
WAVE Short Message:

Source Code

#inc lude "common . h"
#inc lude " encode . h"
#inc lude "decode . h"
#inc lude <time . h>
#inc lude <s t d l i b . h>
#inc lude <a s s e r t . h>

in t main (i n t ac , char ⇤⇤av) {
i n t e r r = 0 ;
s i ze_t ⇤ l en ;

6

s t r u c t wsmp_wsm ⇤msg = c a l l o c (1 , s i z e o f (s t r u c t wsmp_wsm)) ;
s t r u c t wsmp_wsm ⇤parsed = c a l l o c (1 , s i z e o f (s t r u c t wsmp_wsm)) ;

msg�>subtype = 0 ;
msg�>ver s i on = WSMP_VERSION;
msg�>use_n_iex = 1 ;
msg�>tpid = 0 ;

msg�>n_iex = c a l l o c (1 , s i z e o f (s t r u c t wsmp_iex)) ;
msg�>n_iex�>count = 3 ;
msg�>n_iex�>chan = 172 ;
msg�>n_iex�>data_rate = 3 ;
msg�>n_iex�>tx_pow = 30 ;
msg�>n_iex�>use [WSMP_EID_CHANNEL_NUMBER_80211] = 1 ;
msg�>n_iex�>use [WSMP_EID_DATA_RATE_80211] = 1 ;
msg�>n_iex�>use [WSMP_EID_TX_POWER_USED_80211] = 1 ;

uint8_t tmp = 0 ;
msg�>ps id = p_to_hex(0 xC00305 , &tmp) ;

i f (tmp != 3)
goto out ;

msg�>len = 13 ;
msg�>data = c a l l o c (msg�>len , 1) ;

char s t r [] = " He l lo world ! " ;
memcpy(msg�>data , s t r , msg�>len) ;

print_wsm(msg) ;

s i ze_t count = 0 ;
uint8_t ⇤bytes = wsmp_wsm_encode(msg , &count , &err , WSMP_STRICT) ;

i f (e r r)
goto out ;

p r i n t f ("\ nEncoded WSM (%lu bytes) : \ n" , count) ;
i n t i ;
f o r (i = 0 ; i < count ; i++)
p r i n t f ("%02x " , bytes [i]) ;

s i z e_t parsed_index = 0 ;
parsed = wsmp_wsm_decode(bytes , &parsed_index , count , &err , WSMP_STRICT) ;

i f (e r r)
goto out ;

s i ze_t parsed_count = 0 ;
uint8_t ⇤parsed_bytes = wsmp_wsm_encode(parsed , &parsed_count , &err , WSMP_STRICT) ;

i f (e r r)
goto out ;

/⇤ Equal i ty check ⇤/
f o r (i = 0 ; i < count ; i++)
i f (bytes [i] != parsed_bytes [i])
goto out ;

p r i n t f ("\n\nRecovered Encoding (%lu bytes) : \ n" , parsed_index) ;
f o r (i = 0 ; i < parsed_count ; i++)
p r i n t f ("%02x " , parsed_bytes [i]) ;

p r i n t f ("\n ") ;

out :
free_wsm (msg) ;
free_wsm (parsed) ;

r e turn e r r ;
}

Output

7

BEGIN WSM
subtype : 0
ve r s i on : 3
tp id : 0
use_n_iex : 1
n_iex :

BEGIN IEX
count : 3
chan : 172
data ra t e : 3
tx_pow : 30
psc . l en : 0
psc . data :

ip : 00000000000000000000000000000000
port : 0000
mac 000000000000
rcp i_thres : 0
count_thres : 0
count_thres_int : 0
edca . ac_be : 00000000
edca . ac_bk : 00000000
edca . ac_vi : 00000000
edca . ac_vo : 00000000
chan_access : 0
repeat_rate : 0
loc_2d . l a t i t u d e : 00000000
loc_2d . l ong i tude : 00000000
loc_3d . l a t i t u d e : 00000000
loc_3d . l ong i tude : 00000000
loc_3d . e l e v a t i o n : 0000
advert_id . l en : 0

sec_dns : 00000000000000000000000000000000
gateway_mac : 000000000000

raw_count : 0
raw :
in_use :
(0 , 0)
(1 , 0)
(2 , 0)
(3 , 0)
(4 , 1)
(5 , 0)
(6 , 0)
(7 , 0)
(8 , 0)
(9 , 0)
(10 , 0)
(11 , 0)
(12 , 0)
(13 , 0)
(14 , 0)
(15 , 1)
(16 , 1)
(17 , 0)
(18 , 0)
(19 , 0)
(20 , 0)
(21 , 0)
(22 , 0)
(23 , 0)

END IEX

ps id : 00004385
por t s . s r c : 8543
por t s . dst : 0000
use_t_iex : 0
l ength : 13
data :

8

48 65 6c 6c 6 f 20 77 6 f 72 6c 64 21 00
END WSM

Encoded WSM (29 bytes) :
0b 03 04 01 1e 0 f 01 ac 10 01 03 00 c0 03 05 0d 48 65 6c 6c 6 f 20 77 6 f 72 6c 64 21 00

Recovered Encoding (29 bytes) :
0b 03 04 01 1e 0 f 01 ac 10 01 03 00 c0 03 05 0d 48 65 6c 6c 6 f 20 77 6 f 72 6c 64 21 00

References

[1] IEEE Std 802.11-2012 IEEE Standard for Information Technology – Telecommunications and
information exchange between systems – Local and metropolitan area networks–Specific re-
quirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications

[2] IEEE Std 1609.0-2013 IEEE Guide for Wireless Access in Vehicular Environments (WAVE) –
Architecture

[3] IEEE Std 1609.2-2016 IEEE Standard for Wireless Access in Vehicular Environments – Secu-
rity Services for Applications and Management Messages

[4] IEEE Std 1609.3-2016 IEEE Standard for Wireless Access in Vehicular Environments (WAVE)
– Networking Services

[5] IEEE Std 1609.4-2016 IEEE Standard for Wireless Access in Vehicular Environments (WAVE)
– Multi-channel Operation

[6] IEEE Std 1609.11-2010 IEEE Standard for Wireless Access in Vehicular Environments
(WAVE) – Over-the-Air Electronic Payment Data Exchange Protocol for Intelligent Trans-
portation Systems (ITS)

[7] IEEE Std 1609.12-2016 IEEE Standard for Wireless Access in Vehicular Environments
(WAVE) – Identifier Allocations

[8] ETSI EN 302 636-4-1 V1.2.1 (2014-05), Intelligent Transport Systems (ITS); Vehicular Com-
munications; GeoNetworking; Part 4: Geographical addressing and forwarding for point-to-
point and point-to-multipoint communications; Sub-part 1: Media-Independent Functionality.

[9] ISO 29281-1, Intelligent transport systems — Communications access for land mobiles
(CALM) — Non-IP networking—Part 1: Fast networking & transport layer protocol (FNTP).

[10] E. Donato, E. Madeira and L. Villas, "Impact of desynchronization problem in 1609.4/WAVE
multi-channel operation," 2015 7th International Conference on New Technologies, Mobility
and Security (NTMS), Paris, 2015, pp. 1-5.

[11] C. Valasek, C. Miller, "Remote Exploitation of an Unaltered Passenger Vehicle," 2015

[12] William Whyte, Jonathan Petit, Virendra Kumar, John Moring and Richard Roy, "Threat
and Countermeasures Analysis for WAVE Service Advertisement," IEEE 18th International
Conference on Intelligent Transportation Systems, 2015

[13] SAE J 2735-2016 Dedicated Short Range Communications (DSRC) Message Set Dictionary

9

	Introduction
	Contributions
	Wireless Access in Vehicular Environments
	Channel Switching
	WAVE Security

	Implementation
	Modifications of mac80211 subsystem
	Modifications of cfg80211 utility
	Modifications of nl80211 subsystem
	Additional modifications of wireless subsystem
	Modifications needed for wireless hardware drivers
	WAVE Short Message Protocol
	Userspace tools for V2X stack

	Conclusions

