
Abusing Web Hooks
For Command And Control

Dimitry Snezhkov
@Op_nomad

X-Force Red
IBM Corporation

What we are going to talk about
Subject: Safe(er) bidirectional delivery of content and communication across
network boundaries with the use of WebHook technology.

From:
- Hostile networks
- Monitored networks
- Censored networks
- Restricted networks

To:
- External Hosts under your control. (C&C servers)

Purpose:
- External Content Retrieval
- Internal Content Exfiltration
- Shell Execution on External and Internal Hosts

Audience
Offense
• Red Teamers
• Pen Testers

Defense
• DF/IR folks
• Sysadmins
• Developers

• Privacy Advocates
• Anyone interested in covert communication

Dimitry Snezhkov
X-Force Red , IBM Corporation

“Opinions expressed are solely my own and do not
express the views or opinions of my employer or it’s
products.”

What I do:
- Offensive Testing
- Code Hacking
- Tool Hacking
- Other security work

Watson> Are you sure?..

About

Meet Defense at their map of the world.

• Seek alternative means of effective outbound
communication through content proxies.

• Maximize adaptive retooling capability for exfiltration.

• Minimize discoverability of outbound communication in
environments

• Use opportunities in targeted environment to overcome
restrictions.

Context: Strategic Goals

• Achieve asynchronous or realtime-asynchronous communication
between hostile network and external server under your control.

• Attempt to achieve reverse connectivity to hostile networks from
external server under your control

• Avoid existing detection mechanisms, elevating OpSec
capability.

• Attempt to avoid censorship in communicating to safe external
server under your control.

Context: Tactical Goals

Technical Mechanisms

• Discover HTTP WebHooks concept.

• Use WebHooks to Achieve asynchronous
unidirectional or bi-directional connectivity with
external world.

• Develop a tool to shuttle communication
over WebHooks.

Set The Stage: Players

• Offense (RED)
• Defense(BLUE)
• Content Proxy
• Command and Control Server (C&C or C2)
• C2 Broker
• Internal Agent, Client
• External Agent, Server

A game of 6 blind blue men and the red elephant

The Problem

Communication from restricted networks can be challenging.

- What is this unknown I am seeing
- How blind is it
- How can I better restrict it
- How to detect its capabilities

without revealing my mechanisms

The Problem: Blue Perspective

• Wait until unknown moves
• Place a monitor and watch.

Passive and works for us…

- What is this environment. How can
I quickly/safely learn more.

- What can they do to me, How
many defenses are there, How
many more will I see if I move

- How blind are they really.
- Where are sensors. How many

attempts. What timeouts?

-

The Problem: Red Perspective

Wish: If I don’t move maybe they will go away …
Reality: Have to move to figure out.

The Elephant has to move…

• Unsafe negative outcome
• Safe negative outcome
• Safe positive outcome

0:0

First move may kill

For the Elephant

Know the feeling?

Unsafe Negative Outcome

Safe Negative Outcome

Red: My probes tell me I can classify
this environment as HOSTILE:
- IDS sensor
- ICMP/DNS Tunneling prohibited
- Tight Content proxy
- Looks like I cannot reach drives,
- No domain fronting.
- If I move with brute force I will crash.

Panic now? But I am still ALIVE!

Blue: My sensors tell me I can
classify the unknown as SAFE,
we are friends.

Opinions:
- it’s an approved tool
- It’s a safe protocol
- It’s an approved port
- It’s an allowed site
- It’s a safe traffic,
- It’s a known x,y,z….

My Mechanisms Check out:
• I have a draconian content proxy,
• I have a whitelist.
• I inspect traffic for “known bad”

Safe Positive Outcome

X

The map is not the territory!

Both built a static map of the world
based on previous assumptions and odds.

Both CLASSIFIED the odds.
No map is ever completely true

• May have uses only “known” methods for classification
• May be overly paranoid of each other’s capability.
• May be dismissive of each other’s capability.

Red needs to:

• Consistently break its static map of the world.
Adapt.

• Meet Blue at their map of the world. Pace
and lead them.

The map is not the territory!

mim·ic·ry
/`miməkrē/

BIOLOGY
the close external resemblance of an
animal or plant (or part of one) to
another animal, plant, or inanimate
object.

Safe Positive Outcome: On The Path to Mimicry

Levels of Mimicry for Red.
• Blue known and approved Business

Need/Role/Process
• Blue approved Traffic/Protocol
• Blue “good” Tools and “valid” Rules

On The Path to Mimicry: Developers

Blue: Trust Detection Mechanisms
• I have a draconian content proxy,
• I have a whitelist.
• I inspect traffic for “known bad”

Recall:

Pace: Mimic and Follow the Developer.
Pace: Code Red tools in the shadow of the Developer

process/tools/protocols/
Pace: Hide in plain sight, in the shadow of Developer

routine.

Lead: Make Blue believe you are “known good”.

I believe my Developer -> I see you act as one -> I believe
you..

Strategic Goals Revisited

Meet Defense at their map of the world.

WebHooks for the Red Elephants

• A new technology for Asynchronous Web responses
• Built for notification services.
• Bound to make it’s way into the enterprise
• Easy to implement.
• Low maintenance.
• Collaborative and Social Coding friendly.
• Operates over HTTP.
• All security mechanisms apply (TLS)

Server Request / Response polling loop

1. We submit a request for processing to the Web server.

2. Server begins executing our request.

3… Client keeps polling Webserver for response.
“Are we there yet?”

- No. 5 request No! 50 requests No!! 500 requests
- STOP Asking!!!!

Server gets annoyed. Context switches, Resources

4. When the server has the result client grabs it.
Client is happy, Server is a bit more relaxed , until next time.

WebHooks. Response Subscription

STOP Asking!!!! I could just tell the client when I am done.

0. Client provides a URL for response (a hook) to the server.

1. Client submits a request for processing to the server.

2. Server begins executing client request. Client sleeps.

3. When the server has the result it
notifies the client by sending the response back

4. Client wakes up and processes the response.

Client is happy.
Server is happy. We communicate ASYNCHRONOUSLY

WebHooks in Action

• A link to the Client’s resource recorded on the Server.

http://client/action/method

• Client LISTENs for events or a port

Client.listen(“X.X.X.X”, 8080)

Server POSTS the response to the link when it’s ready.

Who uses WebHooks?

• Continuous Integration (CI) services (e.g Heroku)
• Code management repos (GitHub, etc.)
• Team Communication services (Slack, etc.)
• Notifications and Alerting (e.g. DataDog, PagerDuty, etc.)

Everyone else …

Safe Negative Outcome Revisited

Your direct connection
C2 site is not ranked, sorry

Red: My probes tell me I can classify
this environment as HOSTILE:
- IDS sensor
- ICMP/DNS Tunneling prohibited

Tight Content proxy

- Looks like I cannot reach drives,
- No domain fronting.
- If I move with brute force

I will crash.

C2 Broker

• Find a policy allowed site to communicate with.
• Turn it into a content broker (C2 Broker) with WebHooks.
• Drive data and communication over the broker site to C2

What If:

Meet the Defense at their map of the world.

C2 Broker Site Operation

Poll result

Request Notify

Execute and Respond

Store

Store

Proxy

• Needs to be public
• Needs to have a decent set of Web hook APIs (flexibility).
• Needs to allow you to blend into the traffic.
• Needs to be allowed, look normal

(traffic expected by the business function).

It needs to be on the “VIP list” with the content proxies

C2 Broker Features

Desirable Traits

Who uses WebHooks? Follow the Developer

• Continuous Integration (CI) services (e.g Heroku)
• Code management repos (GitHub, etc.)
• Team Communication services (Slack, etc.)
• Notifications and Alerting (e.g. DataDog, PagerDuty, etc.)

Everyone else …

GitHub.com
• Extensively used and Popular. Advantage
• Developer friendly. Full featured WebHook API. Advantage
• [Mostly] allowed. Advantage

• OpSec features. TLS, tokens, HMAC on request. HTTP.
Advantage

• Developers drive internal adoption. Advantage

GitHub as C2 Broker Site

OctoHook – a GitHub C2 Broker Toolkit

• Register OctoHook Server Webhook w/Github

• Use OctoHook Client to send request to the OctoHook
Server over Github (Store and forward)

• Github site will drive the WebHook to Octohook Server.

• The WebHook will reach to your C2 OctoHook Server and
execute a command on your C2 server.

• The C2 will store response of you command on Github.

• You will fetch the response locally from Gihub site to your
OctoHook Client

Octohook: Github WebHook setup

GitHub WebHook events

Github Webhook: OpSec

Github is trying to make communication secure. Use it to your advantage

HMAC

Certificate

Octohook Agent Request Delivery Mechanisms

• Every client is an Agent.
- Unique Identifier.

• Command Delivery
• Over Git issues
• Straight YAML/JSON
• Templates

• Initial Logon:
• Git app tokens

Octohook Agent Response Delivery Mechanisms

• Issue states: Client opens. Server closes
• Responses over Comments to Issues.
• Large responses are split across multiple comments, reassembled by client.

Octohook Content Response Delivery Mechanisms

• Over Git uploads per agent directory
• Issue states and status updated over issue

comments

Scenario: Need tools infiltrated.

Github Server Request / Response polling loop

Client

C2 Server

Avoid asking “Are we there Yet?”
• Throttling (Github and Octohook)
• Manual polling command results
• Inconvenient. Asynchronous but not real time

Can we Improve?

Octohook: Bidirectional Asynchronous Comms

Before: A Poll from client (OK)

We can make it asynch broadcast (Better)

Client

C2 server

Github

Octohook: Multi-hook C2 Broker

GitHub Octohook Swarm.
• IPs.
• Ports
• Resources

Github allows up to 20 Web Hooks.

Octohook: Roles

Web Role (Parallel) Command Role
(Exclusive)

Client Side Client Side

Server Side Server Side

Octohook: Roles

Client

Server

Demo

1.Asynchronous Command Execution. Polling

2.Asynchronous Bidirectional Command
Response Delivery

3.Asynchronous Content Delivery

4.Auxiliary Features

Octohook C2 Broker Now
• Cross-Platform (Command Role only for

now)
• Real time/Asynchronous notification
• On demand response monitoring (Git Issue

polling)
• Execute on server, find content and upload

to GitHub for retrieval
• Single process embedded command

server, and the web server
• Extensible with command plugins.
• Request throttling aware.
• Can be coded for exfiltration.
• Can be coded for infiltration

Octohook C2 Broker What’s Next

• Broadcast across all agents. Swarming capability.
• Send commands/receive commands from specific agents.
• Role (re-)assignment.
• Request to specific Agent
• Simultaneous execution on multiple agents.
• Flip C2 direction (e.g. to the inside).

Defense and Mitigation

WebHooks are here to stay. GitHub proxy is just one example.

• Behavioral rules are best to see what is “normal” for your org.

• Allow specific developer workstations access to Github.

• Take a hard look of who and why is using GitHub in your org.
Chances are Github is probably used everywhere in your org.

• Allow access to only specific Repo paths if possible.

Riding the Social coding and collaboration wave will most likely continue.
• Survey what public cloud portals with webhooks are being used internally.
Slack, CI tools, Video and Meeting software.

Thank you!

Code: https://github.com/dsnezhkov/octohook

Questions?

Follow updates / Stay in touch @Op_nomad

