
I Know What
You Are By the
Smell of Your

Wi-Fi Denton Gentry
@dgentry

denny@geekhold.com

We’re here today to talk about a mechanism which identifies the type of device
connecting to a Wi-Fi network. It can be quite specific: it can tell the difference
between an iPhone 5 and an iPhone 5s, between a Samsung Galaxy S7 and an S8,
between a Withings scale and a Nest Thermostat.

Classically, this kind of client detection would be called “fingerprinting” like the OS
fingerprinting mechanisms in nmap. However, in modern usage the term
“fingerprinting” has evolved to mean identification of specific users, such as browser
fingerprinting to identify a specific individual.

As the mechanism discussed here identifies the species of the device, not the unique
individual, we refer to it as Wi-Fi Taxonomy.

0:50

Try It!

1%

10%

Poll: Wi-Fi at DEFCON for a demo

89%

bad idea.

worst idea.
what could go wrong?

SSID: SmellOfWifiTalk

You can try it! Joining SmellOfWifiTalk will print the system’s estimation of what your
device is, for however long a rogue Wi-Fi network lasts at DEFCON. It will be printed
in that terminal window up on the screen.

0:30

MAC Sublayer Management Entity (MLME)
Probe Request: Asks nearby APs to respond.

Association Request: join the Wi-Fi network

Probe Request

Association Request

Probe Response

Association Response

Try It! SSID: SmellOfWifiTalk

The mechanism works by examining Wi-Fi Management frames, called MLME
frames. These frames are used to join, leave, and configure the Wi-Fi network. They
are not TCP/IP packets, they are not routable and they do not leave the Wi-Fi
network.

We’ll focus on two specific frames:
1. Probe Request, where a client can ask all nearby APs or one specific AP to

respond. The client includes information about itself and its capabilities in the
request, and the AP can respond with its own capabilities in the response.

2. We’ll also look at the Association Request, when a client joins a Wi-Fi network.
The client includes many of the same capabilities as in the Probe Request,
plus a few more.

There are a bunch of other types of frames, like the Authentication frame or Action
frames to adjust various parameters, but the Taxonomy mechanism we’re talking
about today relies on these two.

0:50

Signature: Information Elements
Tag #0
Tag #1
Tag #33
Tag #36
Tag #48
Tag #70
Tag #45
Tag #191
Tag #221, Vendor OUI 00:17:f2, #10
Tag #221, Vendor OUI 00:10:18, #2
Tag #221, Vendor OUI 00:50:f2, #2

0,1,33,36,48,70,45,191,
221(0017f2,10),221(0010
18,2),221(0050f2,2)

Try It! SSID: SmellOfWifiTalk

Information Elements are Type-Length-Value tuples packed one after the other in the
management frame. They are all optional, though in practice a few are universal
because Wi-Fi can’t really work without them. Each Wi-Fi standard has added more
Information Elements. In 802.11b days there were very few. 802.11g added a few,
802.11n and ac added a bunch more, and so on.

In addition to the standard elements, there is a mechanism for vendors to define their
own. Vendor extensions are type 221 with an identifier for the vendor called the
Organizationally Unique Identifier or OUI, and finally by a subtype so the vendor can
define multiple extensions. Because the Length provides enough information to skip
over the IE, any Wi-Fi device can interoperate whether it understands the vendor
extensions or not. It can skip over those it doesn’t implement.

This is the Association Request from an iPhone 7+, as broken out by Wireshark. The
Association Request includes the SSID the client wants to join, information about its
supported rates and channels, about its power levels and radio management
capabilities, plus three vendor extensions from Microsoft, Broadcom, and Apple.

A few of the vendor extensions are extremely widespread. The Microsoft extension
shown above is for prioritization, and it’s widely present even on devices not running
any kind of Windows OS. The Broadcom vendor extension is also very widespread,
owing to how common Broadcom chipsets are. The Apple extension shown here was
added in iOS 10.2 on all iOS devices.

The signature lists the tag numbers of the IEs present in the frame, in the order they
appear, as a text string of decimal numbers. For vendor extensions it additionally
includes the OUI of the vendor and the subtype. For this first part of the signature, we
end up with the text string shown in red.

This part of the signature is most strongly influenced by the OS of the client device,
where the client Wi-Fi stack is implemented.

It is next most strongly influenced by the Wi-Fi chipset, both in terms of the standards
it supports and for any vendor extensions implemented by that vendor in their driver.

2:10

Signature: Capability bitmasks
Transmit power
HT Capabilities bitmask (802.11n)
VHT Capabilities bitmask (802.11ac)

Try It! SSID: SmellOfWifiTalk

0,1,33,36,48,70,45,191,221
(0017f2,10),221(001018,2),
221(0050f2,2),txpow:13f9,
htcap:006f,vhtcap:0f811032

In addition to the tag numbers, a few of the Information Elements contain capability
bitmasks or other information which is useful in identifying the device. For example:

● 802.11n defines 16 bits of optional capabilities, 802.11ac defines another 32
bits. This is most strongly influenced by the chipset, and the subset of the
standard implemented by the ASIC.

● The TX Power IE depends strongly on the board design, in how the antennas
are laid out. Two devices built by the same manufacturer, using the same
software and the same Wi-Fi chipset will often have different TX Power values.

● The number of antennas is encoded in the dot11n and ac capabilities, and is
also indicative of a board design.

● There is an Extended Capabilities bitmask containing even more optional
elements. It is most strongly influenced by the driver and WPA supplicant
software.

A number of the capability bitmasks are appended to the signature to further
differentiate it, as shown in red here.

1:00

Distinctiveness Over Time
iPhone, 2007
0,1,48,50

iPhone 4s, 2011
0,1,48,50,45,221(001018,2),221(00904c,51),221(0050f2,2),
htcap:0100,htagg:19,htmcs:000000ff

iPhone 7, 2016
0,1,33,36,48,70,54,45,127,191,199,221(0017f2,10),221(001
018,2),221(0050f2,2),htcap:006f,htagg:17,htmcs:0000ffff,
vhtcap:0f811032,vhtrxmcs:0000fffa,vhttxmcs:0000fffa,txpo
w:13f9,extcap:000008

Try It! SSID: SmellOfWifiTalk

Looking at the signature as we’ve discussed it so far, it has become more distinctive
over time. This shows the Associate Request portion of the signatures for three
devices.

The first is from an original iPhone, which is a dot11g device. The Taxonomy
mechanism really wouldn’t have worked in that timeframe, there was almost no
differentiation in the contents of MLME frames.

iPhone 4s is an dot11n device, introduced about 4 years later. It adds a number of
options to its management frames.

iPhone 7 is from about 5 years after that, and is an dot11ac device. It added even
more.

0:40

Signatures in their Final Form
Xbox One
wifi4|probe:0,1,45,50,htcap:058f,htagg:03,htmcs:0000ffff|assoc:0,1,33
,36,221(0050f2,2),45,htcap:058f,htagg:03,htmcs:0000ffff,txpow:1208

Nest Thermostat v3
wifi4|probe:0,1,45,221(001018,2),221(00904c,51),htcap:0062,htagg:1a,h
tmcs:000000ff|assoc:0,1,33,36,48,45,221(001018,2),221(00904c,51),221(
0050f2,2),htcap:0062,htagg:1a,htmcs:000000ff,txpow:0f09

Chromecast v1
wifi4|probe:0,1,3,45,50,htcap:0120,htagg:03,htmcs:00000000|assoc:0,1,
48,50,127,221(0050f2,2),45,htcap:012c,htagg:03,htmcs:000000ff,extcap:
0000000000000140

Try It! SSID: SmellOfWifiTalk

The full signature contains the list of IEs and the various bitmasks from each of the
Probe Request and the Associate Request, separated by a pipe. The whole thing is
prefaced by “wifi4” as this is the fourth iteration on the signature format. Including the
prefix allowed the wifi, wifi2, and wifi3 signatures to remain in the database while
updating.

We shall speak no more of the earlier three.

0:25

Mobile Only!
Taxonomy identifies the Wi-Fi circuitry, device driver, and OS.

● Works for highly integrated devices: mobile and IOT.

● With a Wi-Fi card in a laptop... it identifies the card.

Try It! SSID: SmellOfWifiTalk

The Wi-Fi taxonomy signature is influenced by the client OS, by its Wi-Fi chipset, and
its board layout. The current database of signatures identifies the most common Wi-Fi
devices: overwhelmingly phones nowadays. We have signatures for most widely sold
phones and tablet devices of the last few years, and a selection of other types of
devices like:

● Media streaming devices from Google, Apple, Roku, Amazon, et cetera

● Internet of Things devices from Nest, Honeywell, Withings, and so forth

For larger devices like laptops and desktops which use a separate Wi-Fi card: the
mechanism identifies the card. We had signatures from some laptop and desktop
devices, but it was kindof ridiculous.

● One model of Apple Airport Extreme card could be a MacBook, or iMac, or
Mac Pro. That’s pretty much the entire generation of machines, we couldn’t
distinguish them using this mechanism.

● Intel Centrino chipsets as used in Windows laptops are even less distinctive. It
could be almost anything.

So at this point, we don’t even try and don’t add signatures from laptops or desktops
into the database. It tends to just result in confusion, and it isn’t useful.

Additionally, there are a few classes of device which we choose not to gather
signatures for:

● We only want to focus on common devices, things which a lot of people are
likely to have. We use lists of top-selling electronics to target what we want to
gather signatures for. If it is something unique or only in very low volume, we
don’t really want to add it to the database.

● We don’t put in labels for things which might make someone uncomfortable if
they see it in the UI from their router. That includes medical devices, devices
of an adult nature, home incarceration monitoring, and so on.

1:50

Multiple Signatures
wifi4|probe:0,1,45,221(0050f2,8),191,127,htcap:01ef,htagg:1f,htmcs:0000ff

ff,vhtcap:339071b2,vhtrxmcs:030cfffa,vhttxmcs:030cfffa,extcap:04000000000

0004080|assoc:0,1,48,45,221(0050f2,2),191,127,htcap:01ef,htagg:1f,htmcs:0

000ffff,vhtcap:339071b2,vhtrxmcs:030cfffa,vhttxmcs:030cfffa,extcap:04000a

020100004080

wifi4|probe:0,1,45,221(0050f2,8),191,127,htcap:01ef,htagg:1f,htmcs:0000ff

ff,vhtcap:339031b2,vhtrxmcs:030cfffa,vhttxmcs:030cfffa,extcap:04000000000

0004080|assoc:0,1,48,45,221(0050f2,2),191,127,htcap:01ef,htagg:1f,htmcs:0

000ffff,vhtcap:339031b2,vhtrxmcs:030cfffa,vhttxmcs:030cfffa,extcap:04000a

020100004080

Try It! SSID: SmellOfWifiTalk

Many devices have been seen to emit more than one signature and so there is more
than one entry for them in the database.

For devices which support both 2.4 and 5 GHz operation, the signatures are almost
always distinct.

● there are Information Elements which are only defined for one or the other, like
Extended Supported Rates on 2.4

● also the whole of do11ac is only defined for 5GHz.
So for devices which support both bands, we always capture signatures from each
band.

However even in the same band, devices often have multiple signatures. They vary
what they advertise based on local conditions like noise, or in what they saw from the
AP.

This example shows two signatures seen from a Google Pixel Phone. It varies its
handling of beamforming, presumably based on the noise environment it sees.

0:50

Feedback loop with AP
Try It! SSID: SmellOfWifiTalk

Probe Request

Association Request

Probe Response

wifi4|probe:0,1,45,
221(0050f2,8),191,1
27,htcap:016f,htagg
:1f,htmcs:000000ff,
vhtcap:33907132,vht
rxmcs:0186fffe,vhtt
xmcs:0186fffe,extca
p:04000000000000408
0|assoc:0,1,33,36,4
8,70,45,221(0050f2,
2),191,127,htcap:01
6f,...

Clients can also behave differently depending on what the AP says in response to
their Probe Request. For example:

● If the AP says it supports Radio Resource Management, most Apple and
some Android devices will include a Spectrum Management IE in their
Association Request (it’s #70).

● Another example: though dot11ac is only defined for 5 GHz, many vendors
have a proprietary implementation handling 2.4GHz as well. Qualcomm
includes the dot11ac information in the Probe Request, but will only include in
the Association if it sees the right response from the AP.
Broadcom also has a proprietary dot11ac implementation for 2.4GHz, but it
works differently. Of course.

When capturing signatures for the database, we use three different APs to maximize
the chances of capturing different signatures.

1:00

Signature Aliasing
Amazon Dash Button
wifi4|probe:0,1,50,45,3,221(001018,2),221(00904c,51),htcap:110c,htagg:19,htmcs:000000ff|assoc:0,1,48,50,4
5,221(001018,2),221(00904c,51),221(0050f2,2),htcap:110c,htagg:19,htmcs:000000ff

First Alert Thermostat
wifi4|probe:0,1,50,45,3,221(001018,2),221(00904c,51),htcap:110c,htagg:19,htmcs:000000ff|assoc:0,1,48,50,4
5,221(001018,2),221(00904c,51),221(0050f2,2),htcap:110c,htagg:19,htmcs:000000ff

Nexus 7 (2012 edition)
wifi4|probe:0,1,50,45,3,221(001018,2),221(00904c,51),htcap:110c,htagg:19,htmcs:000000ff|assoc:0,1,48,50,4
5,221(001018,2),221(00904c,51),221(0050f2,2),htcap:110c,htagg:19,htmcs:000000ff

Roku HD
wifi4|probe:0,1,50,45,3,221(001018,2),221(00904c,51),htcap:110c,htagg:19,htmcs:000000ff|assoc:0,1,48,50,4
5,221(001018,2),221(00904c,51),221(0050f2,2),htcap:110c,htagg:19,htmcs:000000ff

Withings Scale
wifi4|probe:0,1,50,45,3,221(001018,2),221(00904c,51),htcap:110c,htagg:19,htmcs:000000ff|assoc:0,1,48,50,4
5,221(001018,2),221(00904c,51),221(0050f2,2),htcap:110c,htagg:19,htmcs:000000ff

Try It! SSID: SmellOfWifiTalk

Nonetheless, sometimes we see the same signature from multiple devices.

These examples are all devices using the Broadcom 43362 chipset, running Linux,
with the same driver, the same wpa_supplicant, and old enough that none of them
provide a TX Power IE. The signatures are identical: an Amazon Dash Button, a First
Alert Thermostat, a Nexus 7, Roku HD, and Withings Scale.

0:30

Signature Disambiguation
Amazon Dash Button
wifi4|probe:0,1,50,45,3,221(001018,2),221(00904c,51),htcap:110c,htagg:19,htmcs:000000ff|assoc:0,1,48,50,4
5,221(001018,2),221(00904c,51),221(0050f2,2),htcap:110c,htagg:19,htmcs:000000ff|oui:amazon

First Alert Thermostat
wifi4|probe:0,1,50,45,3,221(001018,2),221(00904c,51),htcap:110c,htagg:19,htmcs:000000ff|assoc:0,1,48,50,4
5,221(001018,2),221(00904c,51),221(0050f2,2),htcap:110c,htagg:19,htmcs:000000ff|oui:firstalert

Nexus 7 (2012 edition)
wifi4|probe:0,1,50,45,3,221(001018,2),221(00904c,51),htcap:110c,htagg:19,htmcs:000000ff|assoc:0,1,48,50,4
5,221(001018,2),221(00904c,51),221(0050f2,2),htcap:110c,htagg:19,htmcs:000000ff|oui:asus

Roku HD
wifi4|probe:0,1,50,45,3,221(001018,2),221(00904c,51),htcap:110c,htagg:19,htmcs:000000ff|assoc:0,1,48,50,4
5,221(001018,2),221(00904c,51),221(0050f2,2),htcap:110c,htagg:19,htmcs:000000ff|os:roku

Withings Scale
wifi4|probe:0,1,50,45,3,221(001018,2),221(00904c,51),htcap:110c,htagg:19,htmcs:000000ff|assoc:0,1,48,50,4
5,221(001018,2),221(00904c,51),221(0050f2,2),htcap:110c,htagg:19,htmcs:000000ff|oui:withings

Try It! SSID: SmellOfWifiTalk

In most cases like this we distinguish them using the top 24 bits of the MAC address,
which is the Organizationally Unique Identifier. OUIs are assigned to a manufacturer.
Adding the OUI as a qualifier can distinguish similar devices from different
manufacturers which have the same signature.

We sometimes use information from DHCP: the options present in the request can
identify the OS, as developed by Fingerbank (http://fingerbank.org) - and by the way,
that earlier work on DHCP option signatures from Fingerbank inspired this mechanism
for Wi-Fi. However using DHCP gets further and further from the Wi-Fi layer, so we try
to be more sparing in using it. In particular, only the AP itself will be able to see the
DHCP information after decryption, it cannot be used from a separate sniffer device
on the Wi-Fi network.

0:45

http://fingerbank.org

Troublesome cases
Try It! SSID: SmellOfWifiTalk

iPad Air 2nd gen vs iPhone 6s

wifi4|probe:0,1,45,127,107,191,221(0017f2,10),221(0050f2,8),221(0
01018,2),htcap:006f,htagg:17,htmcs:0000ffff,vhtcap:0f815832,vhtrx
mcs:0000fffa,vhttxmcs:0000fffa,extcap:0400088400000040|assoc:0,1,
33,36,48,45,127,191,221(0017f2,10),221(001018,2),221(0050f2,2),ht
cap:006f,htagg:17,htmcs:0000ffff,vhtcap:0f815832,vhtrxmcs:0000fff
a,vhttxmcs:0000fffa,txpow:1302,extcap:0400000000000040

However there remain some cases which are still troublesome, mainly devices made
by the same vendor, using the same software, the same Wi-Fi chipset, and at about
the same time. For example, iPad Air 2nd generation and iPhone 6s have the same
signature. We can try to use heuristics, like if the DHCP hostname contains iPad then
maybe it’s an iPad. If nothing else though, we have to return both possibilities.

0:30

Uses of Wi-Fi Taxonomy
Current
● List of Connected Clients in UI
● Correlate with other data

Future
● Optimize for client ?
● WIDS ?

Try It! SSID: SmellOfWifiTalk

This mechanism was originally developed as part of a Wi-Fi AP project. We intended
to focus on identifying the Wi-Fi chipset the client was using. We thought if we could
just know what chipset the client was using, we’d enable all kinds of very clever
workarounds for bugs in that chipset and we would make Wi-Fi perfect… but it turns
out that the kinds of bugs which can be easily worked around are mostly handled by
the software in the client device. Who knew?

Instead, this information is currently used:
● in the UI where one can see a list of connected clients to also give an

indication of what those clients are. If the client includes a useful hostname
that is great, but if it doesn’t include a hostname or it uses something like its
serial number it is better to say what kind of device we think it is.

● We also use it to correlate with performance data to break it out by type of
client device. My colleague Avery Pennarun gave a talk at Netdev 1.1,
"Measuring wifi performance across all Google Fiber customers"
This taxonomy mechanism was one of the topics. The graph on this page
shows Wi-Fi throughput getting better and better as the client gets closer to
the AP, until when it gets really close it drops sharply back down. That sort of
behavior is only visible if the data can be broken out by the type of device.
https://www.youtube.com/watch?v=yZcHbD84j5Y (the section about this
mechanism starts at 16:09).

https://www.youtube.com/watch?v=yZcHbD84j5Y

Possible uses in the future:
● Possibly of interest to this audience: Wireless Intrusion Detection Systems

could make use of knowing more about the type of client connecting. Some of
this stuff is rather difficult for malicious clients to spoof, for example pretending
to be a Broadcom chipset if the attacking device actually uses Qualcomm or
Marvell.

● We might also use it for optimizations based on the client, for example in
packet reorder buffers. These keep retransmitted packets in order at the cost
of introducing delay. Windows absolutely needs the packets to stay in order, it
considers even minimal reordering as congestion and slows down. iOS and
Linux are more tolerant of occasional reordering, and could get lower latency
on average if we allowed occasional packets to arrive out of order.

2:00

Current Status
● hostapd 2.6 added CONFIG_TAXONOMY.

○ hostapd_cli command: signature

● Database of known signatures:
○ https://github.com/NetworkDeviceTaxonomy/wifi_taxonomy

○ 907 signatures covering 172 devices
○ ~60% of connected Wi-Fi devices
○ the long tail is long

Try It! SSID: SmellOfWifiTalk

The implementation to extract signatures for clients went into hostapd in August 2016,
and is present in hostapd 2.6 and later.

The database of known signatures is released as open source code under an Apache
license.
https://github.com/NetworkDeviceTaxonomy/wifi_taxonomy

It currently identifies about 60% of Wi-Fi clients across a broad swath of the market.
The remaining 40% of devices are mostly laptops and desktops, with a long tail of
other types of unidentified devices.

0:45

https://github.com/NetworkDeviceTaxonomy/wifi_taxonomy
https://github.com/NetworkDeviceTaxonomy/wifi_taxonomy
https://github.com/NetworkDeviceTaxonomy/wifi_taxonomy
https://github.com/NetworkDeviceTaxonomy/wifi_taxonomy

Other resources
● Published paper

https://research.google.com/pubs/pub45429.html
https://arxiv.org/abs/1608.01725

● “Measuring wifi performance across all Google Fiber customers”
Avery Pennarun, Netdev 1.1, 2015
https://youtu.be/yZcHbD84j5Y
http://apenwarr.ca/diary/wifi-data-apenwarr-201602.pdf

● https://github.com/NetworkDeviceTaxonomy

Try It! SSID: SmellOfWifiTalk

We published a paper about the mechanism, which goes about a half level of detail
deeper into the implementation.

Earlier I mentioned the talk at Netdev 1.1 by Avery Pennarun, another senior software
engineer working on the project and co-developer of the mechanism. That talk
described the overall environment where this mechanism was developed and how it
was used in that environment.

The github site is intended to host other tools relating to client taxonomy and
identification.

0:30

https://research.google.com/pubs/pub45429.html
https://research.google.com/pubs/pub45429.html
https://arxiv.org/abs/1608.01725
https://arxiv.org/abs/1608.01725
https://youtu.be/yZcHbD84j5Y
https://youtu.be/yZcHbD84j5Y
http://apenwarr.ca/diary/wifi-data-apenwarr-201602.pdf
http://apenwarr.ca/diary/wifi-data-apenwarr-201602.pdf
https://github.com/NetworkDeviceTaxonomy
https://github.com/NetworkDeviceTaxonomy

The Way Forward
● Integration
● Better tools to gather signatures
● AP Taxonomy?

What comes next?
● So. Here is this thing. The signature mechanism is in hostapd, and the

database of signatures is published as open source code, but it is only useful
if integrated into other products and systems: Wi-Fi APs, or Wireless Intrusion
Detection Systems, or other stuff.

● We need to develop better tools for gathering signatures. Right now it is pretty
manually intensive.

● This talk has been all about how APs can identify clients, but running it in
reverse would likely work as well. It could be run on a client to identify the type
of AP it is connecting to. The list of IEs present in the AP’s Beacon and Probe
Response could be turned into a signature, and this would allow any other
connectivity or performance checks to report more information about the AP.

