
Koadic C3
COM Command & Control

DEF CON 25 - July 2017



Agenda

● Current open-source "malware" options for red teams

● Koadic (C3)
○ Advanced JScript/VBScript RAT

● The hell we went through

● Demos



whoami /all

● @zerosum0x0

● @Aleph___Naught

● @JennaMagius

● @The_Naterz

Red Team @ RiskSense, Inc



First things first...

● "SMBLoris" attack
○ Windows 0-day denial-of-service



SMBLoris



Notes

● Not responsible for other people's actions

● A ton of overlapping research, incremental work
○ Consolidate research/techniques

○ "Advances state of the art"

● Meme slides = dirty hack/workaround

● Prototype
○ Used on real engagements

○ Submit fixes, not tixes



Intrusion Phases

● Reconnaissance

● Initial Exploitation

● Establish Persistence

● Install Tools

● Move Laterally

● Collect, Exfil, and Exploit

Source: Rob Joyce, NSA/TAO Director, Enigma 2016



Current State of Windows Post Exploitation

● Yet but a few open-source "malware" options for red teams
○ Meterpreter

○ Cobalt Strike

○ PowerShell Empire

● Roll your own…
○ A decent option- the bad guys do



Downsides of PE Malware

● Meterpreter is amazing software!

● Post-exploitation (and some exploits [psexec]) often involve 

dropping a binary
○ Binaries are what AV love

○ Need to evade payload

■ Veil Evasion

■ Shellter



Downside of PowerShell

● Empire is amazing software!

● Requires PowerShell (duh)
○ Officially- Server 2008 SP2*

○ Requires modern .NET

● Extensive logging/disabling mechanisms

* https://msdn.microsoft.com/en-us/powershell/scripting/setup/windows-powershell-system-requirements



WTS C3 - COM C&C

● Target Win2k SP0
○ Possibly earlier

● JScript/VBScript 
○ Baked directly into the core of Windows 

■ Not an addon-- harder to limit

○ Powerful COM exposed by the OS

○ Creative use of default .exe's

● Ways to execute completely in memory
○ The main benefit of PowerShell



COM Background

● Component Object Model
○ Language neutral 

○ Object oriented 

○ Binary interface

○ Distributed 

● Arguable precursor to .NET
○ Slightly different goals and implementation

■ AKA "still relevant"?

● Found EVERYWHERE in Windows



Downsides of WSH

● No access to Windows API

● No real threading

● Missing a lot of "standard" functions
○ Base64

■ Can be done with other programs

● Unicode strings
○ Bad for making structs/shellcode



Downsides of VBScript

● Shlemiel the Painter problem with string indexing (Mid)
○ Inefficient string iterations

○ @JennaMagius: "Bring the Bucket With You"

● Insane exception handling method
○ "On error resume next", for every scope

● Definitely not lingua franca



Readline Improvements

● Readline is the interactive shell

● When shells/messages start to rain in… 
○ Output overwrites input

● @JennaMagius fixed it, redraw
○ Commit to Metasploit in PR #7570

○ Still an issue in Empire



Koadic Terminology

● Zombie
○ a hooked target

● Stager
○ web server to perform hook

● Implant
○ starts jobs on a zombie

● Job
○ does something interesting



Architecture Overview



Plugin Architecture

● run() method
○ Stager - Spawns HTTP server

○ Implant - Starts Job

● ~VARIABLE~ based JS files

● "stdlib.js" helper functions
○ Run commands

○ Upload/download

○ File I/O

○ HTTP I/O

■ Report on jobs



Implant Categories

● Pivot

● Persistence

● Manage

● Elevate

● Gather

● Scan

● Fun

● Inject



Stager Architecture

● Generally, hook by manual command
○ Can hook from IE, Office macros, etc.

● Python simple HTTP/S threaded server
○ Encryption through TLS/SSL (depending on target)

● Long-poll

● When a job is ready, clones itself twice and dies



Stager Job Cloning

● Hook: If not "Session ID"
○ Assigned a session ID

■ Fork stage

● Stage: If "Session ID" present
○ long-poll to get a "Job ID"

■ Fork stage

■ Fork job

■ Exit

● Job: If "Session ID" && "Job ID"
○ Send job payload

■ Do work

■ Report

■ Exit



regsvr32.exe

● COM Scriptlets
○ Still written to disk

● Present on Windows 2000

● Less sandboxed than MSHTA



MSHTA.exe Stager

● HTML "Applications"
○ Access to registry, filesystem, shell, etc.

○ Some IE security zone sandboxing

● Payload is tiny
○ But missing on Windows 2000



Hidden HTA

● Experimented with 

many techniques 

to hide window

● Later saw malware 

samples do same 

thing



rundll32.exe

● Abuses path/command line parsing
○ Loads MSHTML.DLL

○ Executes JScript

● Basically same thing as mshta.exe

● Less Window visibility
○ MSHTA stager forks to rundll32.exe



Script Unresponsive

● Can long-poll HTTP forever, np
○ Because it's a COM call

● Run too many lines of JScript
○ Even just a few milliseconds?

○ Abort!!

HKCU\Software\Microsoft\Internet Explorer\Styles\MaxScriptStatements



"Uploading" Files

● Binary data is hard to work with… 

● Writing byte-by-byte uses limited instructions

● Adodb.Stream.Write(http.responseBody)
○ Can't write stream directly to file

○ But… information theory allows it



"Uploading" Files 



"Downloading" Files

● Post data is double encoded
○ Windows-1252

○ UTF-8

● Can't send NULL bytes \x00
○ We add another layer of encoding

■ \\ = \\\\

■ \0 = \\\x30

● Extremely slow to decode()
○ So we use hard-coded lookup table



DEMO
Upload+Download, SHA256 verify



UAC Bypasses

● eventvwr.exe by @enigma0x3
○ HKCU\Software\Classes\mscfile\shell\open\command

● sdclt.exe by @enigma0x3
○ HKCU\Software\Classes\exefile\shell\runas\command

● fodhelper.exe by winscripting.blog
○ HKCU\Software\Classes\ms-settings\shell\open\command

● UACME by @hFireF0X
○ Future work, 35+ methods



Dumping NTLM on Local Machines

● Stored in registry hives
○ reg save HKLM\SAM sam.dmp /y

○ reg save HKLM\SYSTEM system.dmp /y

○ reg save HKLM\SECURITY security.dmp /y

● Download to C3 server

● Decode with CoreSecurity/Impacket
○ secretsdump.py -sam %s -system %s -security %s LOCAL



Dumping NTLM from Domain Controllers

● Make shadow copy
○ vssadmin create shadow /for=C:

○ copy shadow\windows\ntds\ntds.dit %TEMP%\ntds.dit

○ reg save HKLM\SECURITY security.dmp

● Download to C3 Server

● Decode with CoreSecurity/Impacket
○ secretsdump.py -ntds %s -system %s -hashes LMHASH:NTHASH LOCAL



DEMO
Bypass UAC, Hashdump



HTTP

● Several HTTP COM Object ProgIDs
○ Msxml2.XMLHTTP

○ Msxml2.ServerXMLHTTP

○ Microsoft.XMLHTTP

○ Microsoft.ServerXMLHTTP

○ WinHttp.WinHttpRequest

○ etc.

● Same basic interface
○ Drastically different behaviors



TCP Scanner

● Use HTTP object to "port scan"
○ AJAX Port Scanner

● Depending on status code, determine if port open



PSExec

● Microsoft signed

● No need to "upload" binary
○ \\live.sysinternals.com@SSL\tools\

● "Dirty bit" are you sure?
○ Bypass is: use a different way to exec it?

● psexec \\computer\ -u domain\user -p pwd -accepteula ~CMD~



WMI

● Start command remotely

● Runs in session 0
○ No GUI = no UAC bypass

■ Need hacks



DEMO
TCP Scan, Pivot



Excel COM Object

● Work gave us Office licenses, we found a good use for them…
● Many workstations have Office

● Excel spreadsheets can be created in memory
○ No need for GUI at all

● Excel spreadsheets have macros
○ Run any VBA, with access to Windows API

■ Shellcode

■ Reflective DLLS



DotNetToJs

● Attack by @tiraniddo

● Uses COM objects installed with .NET

● Load custom serialized object
○ Access to Windows API



DynamicWrapperX

● Written by Yuri Popov (Freeware)

● Allows access to Windows API

● Drop DLL and Manifest

● Registration-free COM
○ Avoids COM registry writes

○ @subTee "re-discovered"



powerkatz.dll

● @clymb3r fork added to Mimikatz core
○ Goal: we want to use this existing DLL

● PowerShell Empire uses "memory module"
○ DLL mapping performed in PowerShell

■ Not reflective injection

■ We're limited on instructions

● "mimishim.dll"



mimishim.dll

● Normal Reflective DLL

● Built-in HTTP

● Determines if x64 system and x86 process
○ Forks if necessary

● Process hollowing of %WINDIR%\sysnative\notepad.exe

● Injects powerkatz.dll
○ privilege::debug - SeDebugPrivilege

○ token::elevate - NT AUTHORITY\SYSTEM

○ Runs the custom command

■ sekurlsa::logonPasswords



DEMO
Mimikatz



Mitigations

● Device Guard/AppLocker/CI

● Block:
○ WSH

○ HTA

○ SCT

● Delete all .exes!

● Delete all COM objects!
○ Including script parsers!



Add to Metasploit

● Additional targets for command/Binary drop modules
○ Such as psexec

● Iterate over all methods of forking to shellcode
○ Until one works



Future Work

● Clean up code

● JavaScript Minimizer/obfuscator

● getsystem

● Persistence implants

● Close some DoS vectors



Related Talks

● COM in Sixty Seconds
○ James Forshaw @ INFILTRATE 2017

● Windows Archaeology
○ Casey Smith and Matt Nelson @ BSides Nashville 2017

● Establishing a Foothold with JavaScript
○ Casey Smith @ Derbycon 2016



Thanks!

● @zerosum0x0

● @Aleph___Naught

https://github.com/zerosum0x0/koadic

● DEF CON Workshop - Saturday @ 14:30 - Octavarius 5
○ Windows Post-Exploitation/Malware Forward Engineering

○ shellcode, winapi, COM, .NET

https://github.com/zerosum0x0/koadic
https://github.com/zerosum0x0/koadic

