
Secure Tokin’ & Doobiekeys:
How to roll your own counterfeit hardware security devices

@sercurelyfitz, @r00tkillah

$whoami

Michael* (@r00tkillah) has done hard-time in real-time. An old-school computer engineer by education, he spends his days
championing product security for a large semiconductor company. Previously, he developed and tested embedded hardware and
software, dicked around with strap-on boot roms, mobile apps, office suites, and written some secure software. On nights and
weekends he hacks on electronics, writes Troopers CFPs, and contributes to the NSA Playset.

* Opinions expressed are solely my own and do not express the views or opinions of my employer.

● Lectrical Nginear by education
● 10+ years of fun with hardware

○ silicon debug
○ security research
○ pen testing of CPUs
○ security training

● Applied Physical Attacks Training:
○ X86 Systems
○ Embedded Systems
○ Hardware Pentesting

● Own white shoes full of LEDs

whoami?

Joe FitzPatrick
@securelyfitz

joefitz@securinghardware.com

Wouldn’t it be cool if...
We had a magical device that

● Encrypted things for us
● Authenticated things for us
● Authenticated us to others
● Solved all our insecurities

Wouldn’t it be cool if...
That magical device

● Fit in the palm of our hand
● Was easy to use
● Only cost a few bucks

Wouldn’t it be lame if...
This turned into a sales pitch for hardware security devices?

These are all improvements...

But they’re not magic.

Classic Hardware Threat Modeling
● Common attackers:

○ Evil maid
○ Supply chain
○ and End user

● Common vectors:
○ external ports
○ internal pins
○ counterfeit chips
○ intrusive techniques

Don’t attack the standard.
Attack the implementation.*

*Does not refer to the hardware implementation

Refers to the use cases and common scenarios

RSA Securid Token

First, what’s the real easiest way in?

“an extremely sophisticated cyber attack”

Hardware can be hard. Hardened Hardware is Harder

?

Common Assumptions:
● The computer may be pwnd, but the token is separate
● The master key inside the chip is what the attackerȇs after
● Getting that key will either be destructive or time consuming

A different Approach:
● The verification code is what we need to login.
● That needs to be output for the device to be functional.
● Can we sniff and relay that?

Surgery time

Surgery time

Dot toggles every
second...

Toggles Every Second...

Bars Ȇbuildȇ every 10s

Pseudocode:
Is_LCD_On:

Sample a pin 3x at 128Hz
If 101 or 010, return true

Wait until Is_LCD_On(2nd to last bar)
Foreach 7seg segment:

IsLCDOn(segment)
Delay 59 seconds
Repeat

But what do we
do with the data?

LCD-BLE bridge
Insanely Low power - should last
years leeching off the coin cell

Lots of GPIO

Plenty of power to read LCD pins
and convert them to text

LCD-BLE bridge - Inspiration:

RSA Tokin’
We didnȇt capture any crypto

We can listen to the verification code

We could broadcast the verification
code over bluetooth

*We still do have to seal up the case
without it looking too much like
tampering… maybe lasers can help...

Image of rsa token with back
panel attached...

Doobikey - Get Some

DoobieKey - Verify
Is this a legit Yubikey?

DoobieKey - Verify
Is this a legit Yubikey?

DoobieKey - Customize

DoobieKey - DIY

DoobieKey - legitimize
Yup!

DoobieKey - legitimize
Yup!

DoobieKey - legitimize
Yup!

Doobiekey - legitimize it!

Doobiekey - Wait. What Just Happened?

Doobikey - With a Touch of Evil

So what?
We poked around at 5 Ȇhardware securityȇ devices.

They are improvements and worth using.

But they arenȇt magic.

So what?
Hardware doesnȇt make things safer.

Hardware doesnȇt make things harder.

Hardware DOES raise the barrier to entry… by a few dollars*

* a few dollars could actually be ∞% more expensive than software!

Every one of these devices improve security.

Use them.

Hardware threat models are LOTS more
complicated than we give them credit for

Software hacking is looking at the layers of
abstraction, and finding a way through.

Hardware is just another layer of abstraction

Software doesn’t run on hardware

It runs on layers of abstractions,
all the way down to electrons and atoms

Still trust hardware implicitly?

What are you smoking?

Questions?

BACKUP!!!

Case Studies:
RSA Tokinȇ

Secure Boot

Trusted Platform Module

Yubikey

The ȆStatelessȇ Computer

Secure Boot - Booting
Blatantly Stolen Slide

Secure Boot - PKCS7 FTW
Blatantly Stolen Slide

Secure Boot - Signed by GeoTrust

Secure Boot - Ubuntu
Blatantly Stolen Slide

Secure Boot - thisisfine.jpg

Secure Boot - Ubuntu
No verfiable kernel? No problem.

ExitBootServices()

Boot Anyway!

Secure Boot - Ubuntu
Wanna Boot Windows
from GRUB?

Sure!

But - windows will NOT report
that it has been securely booted

Secure Boot - Ubuntu
Wanna Boot Windows
from GRUB Ȇsecurelyȇ?

Escape before ExitBootServices()
Is called.

How?
Cȇmon hackers… figure it out

Config files Additional
Modules

3 image parsers
written from scratch

Secure Boot - Ubuntu
Explioit a bug

Boot Bootkit

Bootkit loads windows Bootkit!

Secure Boot - Possible Future

Case Studies:
RSA Tokinȇ

Insecure Boot Spliff

Trusted Platform Module

Yubikey

The ȆStatelessȇ Computer

What’s Trusted Platform Module
It does crypto stuff

It plugs into an LPC header

Many systems donȇt ship with them

In human terms:
I need to get one to use bitlocker.

That’s all great.
Where do i get one?
Best Buy: Nope

Frys: Nope

Microcenter: Nope

Radio Shack: Yeah Right

If you want a hookup,
you have to find a sketchy dealer:

What’s this sketchy stuff
i’m putting in my ‘puter?
LPC = ISA, 4x as fast, ¼ the pins

LPC can do DMA by pulling LDRQ‘

I ♥ DMA
Wouldnȇt it be great if someone already did all that work though?

Oh:

I ♥ DMA

(Un)fortunately LDRQ‘ isnȇt on
the TPM header

Anyone Can Make a TPM*
Itȇs an open standard!

* Anyone with time to spare….

Trusted Platform Modules
People get them from sketchy sources

We could make a malicious one

No DMA, but we could make a leaky one

… maybe the next time I have patience or a nation-state backing me

Case Studies:
RSA Tokinȇ

Insecure Boot Spliff

Trusted Platform Module

Doobiekey

The ȆStatelessȇ Computer

So perhaps we should rethink this whole
hardware security thing...

Isolation works with software. Can it work with hardware?

The industry needs more brainstorming like this

State Logic

Processor
Comms

I/O devices

BIOS
Firmware
EEPROM
NVRAM
Storage

State

This is
the stuff
we need
to trust

State Logic

Processor
Comms

I/O devices

BIOS
Firmware
EEPROM
NVRAM
Storage

State

Or even more simplified:

State Logic

Gates
(but not latches)

Bits

Or even more simplified:

State Logic

Quad XOR
Gate

SPI
EEPROM

Or even more simplified:

State Logic

Quad XOR
Gate

Or even more simplified:

State Logic

!!!Demo
● User sends plaintext
● SPI flash outputs key
● XOR does magic
● XORȇd cyphertext

comes back to user
● Key bits loop around
● Repeat to decrypt

Can you verify this board?
● Itȇs only got one chip
● It was designed in the 60ȇs
● Itȇs only a 2 layer board
● It follows the XOR truth

table properly

Can you verify this board?
● 14 pin DIP = many things
● Attiny84 fits the bill
● Need to bluewire it but that

could be easily concealed

Picture of the populated logic
board

One of these things is not like the other

ATTINY84 74SN86

Faking a crypto ASIC... that’d be like… hard?

Add a little state….

False Advertizing!
But youȇre supposed to be stateless!

Youȇre not supposed to store stuff!

We trusted you!

Wait…

wasnȇt the whole point to
not have to trust you?

Picture of the populated logic
board

We need to
‘Trust’

That this is
stateless!

This is
the stuff
we need
to trust

State Logic

Processor
Comms

I/O devices

BIOS
Firmware
EEPROM
NVRAM
Storage

State

Case Studies:
RSA Tokinȇ

Insecure Boot Spliff

Trusted Platform Module

Doobiekey

Altered State

