
Ghost in the Droid
Possessing Android Applications with ParaSpectre

Jeff Dileo (chaosdata)
DEFCON 25



Hi!
I’m Jeff, and I have a problem.

I like to do bad things to worse programming languages.



*audience says*

Hiiiiiiiiiiiiiiiiii Jeff



Outline

• Introduction

• Motivation

• Original Plan

• Android Function Hooking 102

• ParaSpectre

• Demos

• Future Work



Introduction

What is this about?
• Injecting JRuby into Android applications to hook functionality

Why should you care?
• You reverse Android apps

• You develop Android apps, but realize the debugging stack sucks

• You like Ruby and/or REPLs

$ irb

irb (main):001:0> puts ” this is a REPL”

this is a REPL

=> n i l

i rb (main):002:0>

$ python

Python 2.7.11 ( default , Mar 1 2016, 18:47:52)

[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang−602.0.53)] on darwin
Type ”help” , ”copyright ” , ”credits” or ” license” for more information .

>>> print ” this is also a REPL”

this is also a REPL

>>>





Motivation

• Was reversing multiple complex Android apps

• Including a screwy Korean chat app used primarily by Japanese people

• Writing hooks for it was tedious and it was tricky to figure out what all of the nested

obfuscated objects were



Original Plan
REPL-ize

• Take the interesting functions

...and wrap them in REPLs!

• REPLs are great

• They give you an interactive shell

• And let you poke around at stuff



Android Function Hooking — LD_PRELOAD
Shim to Win

LD_PRELOAD:

• Old-school function hooking

• setprop wrap.<pkg> LD_PRELOAD=/path/to/file.so

• Override dynamically linked native functions

• Inject a native function to run early in app startup

• Requires root access



Android Function Hooking — LD_PRELOAD
Example

#include <dlfcn.h>

#include <stdio.h>

#include <unistd.h>

static int (*_real_rand)(void) = NULL;

__attribute__((constructor))

static void setup() {

_real_rand = (int(*)(void))dlsym(RTLD_NEXT, "rand");

}

int rand() {

if(access(".ps3mode", F_OK) != -1 ) {

return 4;

}

return (*_real_rand)();

}



Android Function Hooking — Frida
J-J-J-JavaScript!

Frida:

• Stomps over instruction memory to add hooks

• Function hooks (for native code and Java) implemented in JavaScript (or native code

using frida-gum)

• Injected with either a root daemon, LD_PRELOAD, or by modifying an APK

• Requires root access (if not modifying an APK)



Android Function Hooking — Frida
Example

Java.perform(function() {

var File = Java.use('java.io.File');

File.exists.implementation = function() {

if(this.path.value == '/system/xbin/su') {

return false;

}

return this.exists();

}

});



Android Function Hooking — Xposed
Monkey-patching zygote is safe, right?

Xposed Framework

• Modifies Zygote to allow for hook code from other packages to be loaded early in the

boot of a target application

• Provides an API to register further hooks within an application

• Due to hook code and target application code having different classloaders, hooks

generally require a lot of reflection to manipulate instances of classes defined in the

target application

• Write hooks in anything that compiles into Java/Dalvik bytecode

• Requires the ability to modify the system image



Android Function Hooking — Xposed
Example (top-level scaffolding)

public class XposedEntry implements IXposedHookLoadPackage {

@Override

public void handleLoadPackage(XC_LoadPackage.LoadPackageParam lpp)

throws Throwable {

if (!lpp.packageName.equals("...")) {

return;

}

ClassLoader singledexcl = lpp.classLoader;

try {

<next slide>

} catch (Throwable t) {...}

}

}



Android Function Hooking — Xposed
Example (multidex scaffolding)

XposedHelpers.findAndHookMethod("android.app.Application",

singledexcl, "attach", Context.class, new XC_MethodHook() {

@Override

protected void afterHookedMethod(

XC_MethodHook.MethodHookParam param) throws Throwable {

Context context = (Context) param.args[0];

ClassLoader multidexcl = context.getClassLoader();

try {

<next slide>

} catch (NoSuchMethodError nsme) {

//pass

} catch (Throwable t) {...}

}

}

);



Android Function Hooking — Xposed
Example (main hook)

XposedHelpers.findAndHookMethod("...", multidexcl, "...",

...<...>.class, new XC_MethodHook() {

@Override

protected void beforeHookedMethod(

MethodHookParam param) throws Throwable {

super.beforeHookedMethod(param);

...

}

@Override

protected void afterHookedMethod(

MethodHookParam param) throws Throwable {

super.afterHookedMethod(param);

...

}

}

);



Android Function Hooking — Xposed
Example (actual hook)

XposedHelpers.findAndHookMethod(File.class, multidexcl, "exists", new XC_MethodHook() {

@Override

protected void beforeHookedMethod(MethodHookParam param) throws Throwable {

String path = ((File) param.thisObject).getAbsolutePath();

if (path.equals("/system/xbin/su")) {

param.setResult(new Boolean(false));

}

}

});

Note: Bootstrap/Android framework classes don’t require multidex scaffolding to hook.







Parasect
The ”Mushroom Pokémon”

Pokédex entries:

• Red/Blue

• A host-parasite pair in which the parasite mushroom has taken over the host bug.

Prefers damp places.

• Yellow

• The bug host is drained of energy by the mushrooms on its back.

They appear to do all the thinking.

• Gold/Stadium 2

• It stays mostly in dark, damp places, the preference not of the bug,

but of the big mushrooms on its back.

• Crystal

• When nothing’s left to extract from the bug,

the mushrooms on its back leave spores on the bug’s egg.

• Diamond/Platinum/Black(2)/White(2)/X

• A mushroom grown larger than the host’s body controls Parasect.

It scatters poisonous spores.



ParaSpectre
”There are only two hard things in Computer Science: cache invalidation and naming things.” -Phil Karlton

1

• para-, from Ancient Greek παρά (pará, ”beside; next to, near, from; against, contrary

to”)

• in(tro)spection, from Middle French, from Old French inspeccion, from Latin inspectiō

(”examination, inspection”), from the verb inspectō (“I inspect”), from spectō

(”I observe, I watch”), frequentive of speciō (”I look at”)

• spectre, from French spectre, from Latin spectrum (”appearance, apparition”)

• Parasect, from parasite and insect

• ParaSpectre, from all of the above

1
He was an original X11 designer/implementer, so you know he’s seen some shit.



ParaSpectre
OK, but seriously, what is it?

• A function/method hooking tool for Android

• Injects a JRuby interpreter into a target process

• Uses JSON to configure method matching selectors

• Hooked functions call into custom Ruby code

• And/or drop into an interactive in-process Ruby REPL

• Implemented using Xposed

• Provides first class access to the Java runtime environment and classloaders

• Ensures that arbitrary app packages may be hooked at device startup

• Hook reloading only requires restarting the application/process

• For reference, reloading Xposed hooks themselves requires reinstalling the hook app’s

APK and then rebooting the device.



Capabilities
Let your hooks choose their own destiny!

Matching selectors

• Be as specific or vague as you want to select methods for hooking

• Uses an intersection of the provided selectors to filter

• Class matching (if class name is not supplied), by:

• superclass name

• implemented interfaces

• Method matching, by:

• method name

• argument type signature

• return type

• exception signature



Capabilities
MINASWAN

Ruby (via JRuby)

• Solid scripting language

• Can be forced to run on Android

• ...with relatively minimal blood sacrifices

• Solid Java interop made better with classloader injection

• Code runs with access to the hooked application’s classloader

• No need for reflection, just write the code

• Define subclasses/impls for app-defined classes/ifaces and plug them

• Stackable script hooks

• Per application package

• Per class matcher

• Per method matcher



Capabilities
Run wild at runtime!

Runtime exploration

• With Pry2 REPLS!

• Pry is a suped-up REPL for Ruby, it’s way better than IRB

• Drop to a Pry REPL to inspect and manipulate application state at runtime

• By default, hooks will drop into a Pry REPL if they don’t return early

2
https://pryrepl.org

https://pryrepl.org


Features
Connect-back REPLs

• Uses a modified version of pry-remote3

• Modifies how it uses the DRuby distributed object protocol

• Adds support for specifying client and daemon ports

• Adds support for Unix domain sockets

• Add authentication (see below)

• Uses a modified Ruby stdlib and a custom authenticating proxy that adds

authentication to DRuby

• If you couldn’t tell by now, DRuby is a super dangerous protocol that is completely

unauthenticated and, by default, enables RCE

• Each connect-back REPL is opened in a new tmux window

• Injects hooks into the package manager system service to enable the main

ParaSpectre app to grant the INTERNET permission to apps that don’t request it.

3
https://github.com/chaosdata/pry-remote

https://github.com/chaosdata/pry-remote


Features
You did WHAT with Jetty?!?

Includes a configuration editor web application

• Raw Jetty Servlet4 web app running on Android

• Usable from a mobile browser on the Android device itself!

• Used to configure method matcher selectors and write Ruby hook code

• Supports a hook editing workflow that doesn’t require adb push

• UI is Ace-based5

• Edits are tracked in an on-device Git repo

• Basic access controls using API keys regenerated on web app start

• Per-app hook config files, with format validation

• Write inline Ruby hooks or reference flat Ruby files

4
Undertow and RESTEasy had issues due to AWT dependencies
5
https://ace.c9.io

https://ace.c9.io


Design
”Simple” in the sense that this fits on a slide

• Loads hook configuration data

• Reads (rw-r-r--) config files from main ParaSpectre app directory

• Based on app package name

• Falls back to a core paraspectre.json config

• Sets up a JRuby environment on Android

• Xposed hook loads pre-dexed JRuby JAR into a hook-configured application

• Uses some reflection-based environment setup, options tweaking, and custom classes

added into JRuby to make it run properly on Android

• Iterates through all classes in target application’s classloader chain

• Selectors use config values to pick from available classes

• Uses Xposed to set up hooks on matching classes/methods

• The Xposed hooks invoke the config-specified JRuby



Hooks
Instant ramen hook

The JSON config format is a work in progress, but works well enough.

{

"classes": [

{

"name": "android.support.v7.app.AppCompatActivity",

"methods": [

{

"name": "findViewById",

"params": ["int"],

"returns": "android.view.View",

"eval": "puts 'id: ' + args[0].to_s; return;"

}

],

"eval": "puts 'in ' + method.to_s;"

}

],

"eval": ""

}



Hooks — Configuration
”Jay Sahn”

More involved hooks should be broken out into a separate Ruby file.

{

"classes": [

{

"name": "okhttp3.OkHttpClient$Builder",

"methods": [

{

"name": "build",

"eval_file": "okhttp3.OkHttpClient$Builder::build.rb"

}

]

}

]

}



Hooks — Code
”Jay Roo Bee”

this . proxy( java . net . Proxy .new(

java . net . Proxy : : Type. valueOf ( ’HTTP ’ ) ,

java . net . InetSocketAddress .new( ’127.0.0.1 ’ ,8080) )

)

this . cert i f icatePinner (

Java : : Okhttp3 . Certif icatePinner : :DEFAULT

) ;

trustAl lCerts = Class .new() {

include javax . net . ss l .X509TrustManager

def checkClientTrusted (chain ,authType)

end

def checkServerTrusted(chain ,authType)

end

def getAcceptedIssuers ( )

[ ] . to_java ( java . security . cert . X509Certificate )

end

}.new

ctx = javax . net . ss l . SSLContext . getInstance ( ’SSL ’ )

ctx . i n i t (

n i l , [ trustAl lCerts ] ,

java . security .SecureRandom.new

)

socketFactory = ctx . getSocketFactory ( )

this . sslSocketFactory ( socketFactory , trustAl lCerts )

ver i f ie r = Class .new() {

include javax . net . ss l . HostnameVerifier

def verify (hostname, session )

true

end

}.new

this . hostnameVerifier ( ver i f ie r )

return



Performance Tricks
JRuby Initialization

• Pre-dexed JRuby jar is loaded into the classloader during Zygote init

• Due to SEAndroid policies, stores this file under /data/dalvik-cache/paraspectre

• Zygote can read from it, runtime root can write to it

• Due to race conditions inherent in Android’s boot sequence, attempting to initialize a

JRuby script container in Zygote deadlocks the system due to Zygote taking too long to

initialize

• Dianne Hackborn, please save us from this darkness6

• As a result, JRuby scripting containers are initialized separately in each hooked app

• This is time consuming

• But we can kick this off in a background thread at the Xposed entry point in app start

• The initial run of Ruby code in an initialized container takes several seconds to run

• Post-init, a Ruby hook script of ”return;” is eval’d in the container to prep it before use

6
Also, can you kill D-Bus and replace it with binder?



Performance Tricks
Class searching and matching

• Various performance tricks played in scanning classes for matchers

• To search, it needs to iterate through the list of loaded classes

• Save time here by only iterating through class names in app’s own DEX files

• Normal ClassLoader::loadClass hits a worst-case path where it searches through the

parent classloader for framework classes

• Bypassed this by yanking out the protected

dalvik.system.BaseDexClassLoader::findClass method and invoking it directly

• Still running into the classloader global lock

• This prevents multithreaded class iteration, and actually makes it less performant due to lock

contention

• May eventually parse DEX files directly to get metadata for matchers



Performance
Results

• JRuby container initialization went from 29 seconds of startup overhead to being

nigh-instantaneous*

• Class matching overhead is generally unobservable on single DEX applications

• com.facebook.katana7 has 12 classes.dex files comprising about 100k classes; it is

not a slender blade

• Class iteration (not performed if class matchers are specified by name) takes 30 seconds

• Once iterated, the matching set of classes (logged to logcat) can be specified by name in

the config

7
Literally the biggest Android app I can think of.



Performance
Caveats

If a hook runs automatically on startup, it may have to wait for the initial JRuby container to

be fully initialized, which can take up to 6 seconds on a ”modern” Android device8

• This runs in parallel to any class searching, which fully blocks app startup to prevent

target methods from running unhooked

8
All Android performance numbers come from a Nexus 5X.



Performance
Speed and Latency

• Overall though, the edit workflow is two orders of magnitude smaller than writing raw

Xposed hooks

• Edit Java code (??)

• Compile Java code as an Android app (30s+)9

• Copy APK to mobile device (10s+)

• Install APK (30s+)

• Reboot phone (2-3 minutes if the device is encrypted and has a PIN)

9
All laptop performance numbers come from a Late 2013 13” MacBook Pro.



Demos



Where?
Soon

https://github.com/nccgroup/paraspectre

https://github.com/nccgroup/paraspectre


Current Limitations
Caveat emptor!

• The DRuby protocol is scary, a hooked app (as it can authenticate) can potentially gain

RCE on the host running the pry-remote-based client

• For now, it’s probably best to run the REPL client from a VM

• Long term solution involves research into DRuby

• Medium term solution involves sandboxing the client

• Adding gems is not supported yet, and requires manual bit twiddling



Future Work
Fixing the limitations

• Gem JAR file upload API

• Overhaul the UI for creating, editing, and managing hooks

• Android 7/N+ compatibility (once Xposed supports it)

• Current world-readable config file implementation may break due to SEAndroid changes

• Google’s workaround uses the Android support library, not a standard class

• Leveraging root access to edit a shared config in the /data/dalvik-cache/paraspectre

directory is ugly, but feasible

• Figure out the DRuby situation



Greetz
Here’s to all the little people...

• aleks
• arkos
• bones
• justin
• nabla
• niko
• weber



Questions?
jeff.dileo@nccgroup.trust

@ChaosDatumz



Ghost in the Droid
Possessing Android Applications with ParaSpectre

Jeff Dileo (chaosdata)
DEFCON 25


	Introduction
	Motivation
	Original Plan
	Android Function Hooking 102
	ParaSpectre
	Demos
	Future Work

