Ghost in the Droid

Possessing Android Applications with ParaSpectre

Jeff Dileo (chaosdata)
DEFCON 25

%.

Hi!

I'm Jeff, and | have a problem.

| like to do bad things to worse programming languages.

audience says

Hiiiiiiiiiiiiiiiiii Jeff

Outline

Introduction

Motivation

Original Plan

Android Function Hooking 102

ParaSpectre

e Demos

Future Work

%

Introduction
What is this about?

* Injecting JRuby into Android applications to hook functionality

Why should you care?
* You reverse Android apps
* You develop Android apps, but realize the debugging stack sucks
* You like Ruby and/or REPLs

$ irb

irb(main):001:0> puts "this is a REPL”

this is a REPL

= nil

irb(main):002:0>

$ python

Python 2.7.11 (default, Mar 1 2016, 18:47:52)

[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang—602.0.53)] on darwin
Type "help”, "copyright”, "credits” or "license” for more information.
>>> print "this is also a REPL”

this is also a REPL

>>>

%.

Motivation

* Was reversing multiple complex Android apps

* Including a screwy Korean chat app used primarily by Japanese people

* Writing hooks for it was tedious and it was tricky to figure out what all of the nested
obfuscated objects were

%.

Original Plan

REPL-ize

* Take the interesting functions
...and wrap them in REPLs!

* REPLs are great

* They give you an interactive shell
* And let you poke around at stuff

%.

Android Function Hooking — LD_PRELOAD

Shim to Win

LD PRELOAD:

Old-school function hooking

setprop wrap.<pkg> LD PRELOAD=/path/to/file.so
Override dynamically linked native functions

Inject a native function to run early in app startup

Requires root access

%.

Android Function Hooking — LD _PRELOAD

Example

#include <dlfcn.h>
#include <stdio.h>
#include <unistd.h>

static int (*_real _rand)(void) = NULL;

__attribute ((constructor))
static void setup() {

~real _rand = (int(*)(void))dlsym(RTLD NEXT, "rand");
}

int rand() {
if(access(".ps3mode", F OK) !'= -1) {
return 4;
}
return (* real _rand)();

}

%

Android Function Hooking — Frida
J-J-J-JavaScript!

Frida:
* Stomps over instruction memory to add hooks

* Function hooks (for native code and Java) implemented in JavaScript (or native code
using frida-gum)

* Injected with either a root daemon, LD_PRELOAD, or by modifying an APK

* Requires root access (if not modifying an APK)

%.

Android Function Hooking — Frida

Example

Java.perform(function() {
var File = Java.use('java.io.File');
File.exists.implementation = function() {
if(this.path.value == '/system/xbin/su') {
return false;
}

return this.exists();

1)

%

Android Function Hooking — Xposed

Monkey-patching zygote is safe, right?

Xposed Framework

Modifies Zygote to allow for hook code from other packages to be loaded early in the
boot of a target application

Provides an API to register further hooks within an application

Due to hook code and target application code having different classloaders, hooks
generally require a lot of reflection to manipulate instances of classes defined in the
target application

Write hooks in anything that compiles into Java/Dalvik bytecode

Requires the ability to modify the system image

%.

Android Function Hooking — Xposed

Example (top-level scaffolding)

public class XposedEntry implements IXposedHookLoadPackage {
@Override
public void handleLoadPackage(XC LoadPackage.LoadPackageParam lpp)
throws Throwable {

if (!lpp.packageName.equals("...")) {
return;

}

ClassLoader singledexcl = 1lpp.classlLoader;

try {

<next slide>
} catch (Throwable t) {...}

%

Android Function Hooking — Xposed

Example (multidex scaffolding)

XposedHelpers. findAndHookMethod ("android.app.Application",
singledexcl, "attach", Context.class, new XC MethodHook() {
@Override
protected void afterHookedMethod(
XC MethodHook.MethodHookParam param) throws Throwable {
Context context = (Context) param.args[0];
ClassLoader multidexcl = context.getClassLoader();
try {
<next slide>
} catch (NoSuchMethodError nsme) {
//pass
} catch (Throwable t) {...}

%.

Android Function Hooking — Xposed

Example (main hook)

XposedHelpers. findAndHookMethod("...", multidexcl, "...

..<...>.class, new XC_MethodHook() {

@Override

protected void beforeHookedMethod (
MethodHookParam param) throws Throwable {
super.beforeHookedMethod(param);

@Override

protected void afterHookedMethod(
MethodHookParam param) throws Throwable {
super.afterHookedMethod (param) ;

%.

Android Function Hooking — Xposed

Example (actual hook)

XposedHelpers. findAndHookMethod (File.class, multidexcl, "exists", new XC MethodHook() {
@Override
protected void beforeHookedMethod(MethodHookParam param) throws Throwable {
String path = ((File) param.thisObject).getAbsolutePath();
if (path.equals("/system/xbin/su")) {
param.setResult(new Boolean(false));
}
}
1)

Note: Bootstrap/Android framework classes don’t require multidex scaffolding to hook.

%.

Parasect

The "Mushroom Pokémon”
Pokédex entries:
* Red/Blue
¢ A host-parasite pair in which the parasite mushroom has taken over the host bug.
Prefers damp places.
* Yellow
* The bug host is drained of energy by the mushrooms on its back.
They appear to do all the thinking.
Gold/Stadium 2

¢ It stays mostly in dark, damp places, the preference not of the bug,
but of the big mushrooms on its back.

* Crystal
* When nothing'’s left to extract from the bug,
the mushrooms on its back leave spores on the bug’s egg.
* Diamond/Platinum/Black(2)/White(2)/X
* A mushroom grown larger than the host’s body controls Parasect.
It scatters poisonous spores.

-

ParaSpectre

"There are only two hard things in Computer Science: cache invalidation and naming things.” -Phil Karlton®

* para-, from Ancient Greek nopd (pard, "beside; next to, near, from; against, contrary
to”)

* in(tro)spection, from Middle French, from OIld French inspeccion, from Latin inspectio
("examination, inspection”), from the verb inspectd (“l inspect”), from specté
("1 observe, | watch”), frequentive of specié ("l look at”)

* spectre, from French spectre, from Latin spectrum ("appearance, apparition”)
* Parasect, from parasite and insect

* ParaSpectre, from all of the above

%.

'He was an original X11 designer/implementer, so you know he’s seen some shit.

ParaSpectre

OK, but seriously, what is it?

* A function/method hooking tool for Android
* Injects a JRuby interpreter into a target process

* Uses JSON to configure method matching selectors
* Hooked functions call into custom Ruby code

* And/or drop into an interactive in-process Ruby REPL
* Implemented using Xposed

* Provides first class access to the Java runtime environment and classloaders
» Ensures that arbitrary app packages may be hooked at device startup

* Hook reloading only requires restarting the application/process

* For reference, reloading Xposed hooks themselves requires reinstalling the hook app’s
APK and then rebooting the device.

Capabilities

Let your hooks choose their own destiny!

Matching selectors

* Be as specific or vague as you want to select methods for hooking

Uses an intersection of the provided selectors to filter

* Class matching (if class name is not supplied), by:

superclass name
implemented interfaces

* Method matching, by:

method name

argument type signature
return type

exception signature

%.

Capabilities

MINASWAN

Ruby (via JRuby)
* Solid scripting language
» Can be forced to run on Android
* ...with relatively minimal blood sacrifices
* Solid Java interop made better with classloader injection
» Code runs with access to the hooked application’s classloader
* No need for reflection, just write the code
¢ Define subclasses/impls for app-defined classes/ifaces and plug them
* Stackable script hooks

» Per application package
* Per class matcher
* Per method matcher

Capabilities

Run wild at runtime!

Runtime exploration
* With Pry? REPLS!
* Pry is a suped-up REPL for Ruby, it's way better than IRB

» Drop to a Pry REPL to inspect and manipulate application state at runtime

* By default, hooks will drop into a Pry REPL if they don't return early

*https://pryrepl.org

%.

https://pryrepl.org

Features

Connect-back REPLs

* Uses a modified version of pry- remote3
* Modifies how it uses the DRuby distributed object protocol

* Adds support for specifying client and daemon ports
* Adds support for Unix domain sockets
* Add authentication (see below)

* Uses a modified Ruby stdlib and a custom authenticating proxy that adds
authentication to DRuby

* If you couldn’t tell by now, DRuby is a super dangerous protocol that is completely
unauthenticated and, by default, enables RCE

* Each connect-back REPL is opened in a new tmux window

* Injects hooks into the package manager system service to enable the main
ParaSpectre app to grant the INTERNET permission to apps that don’t request it.

3https://github.com/chaosdata/pry—remote

https://github.com/chaosdata/pry-remote

Features

You did WHAT with Jetty?!?

Includes a configuration editor web application

Raw Jetty Servlet* web app running on Android
* Usable from a mobile browser on the Android device itself!

Used to configure method matcher selectors and write Ruby hook code
Supports a hook editing workflow that doesn’t require adb push

Ul is Ace-based®

Edits are tracked in an on-device Git repo

Basic access controls using APl keys regenerated on web app start
Per-app hook config files, with format validation

Write inline Ruby hooks or reference flat Ruby files

4Undertow and RESTEasy had issues due to AWT dependencies

5https://ace.cg.io

%.

https://ace.c9.io

Design

"Simple” in the sense that this fits on a slide

* Loads hook configuration data
* Reads (rw-r-r--) config files from main ParaSpectre app directory

* Based on app package name
* Falls back to a core paraspectre.json config

* Sets up a JRuby environment on Android

» Xposed hook loads pre-dexed JRuby JAR into a hook-configured application
» Uses some reflection-based environment setup, options tweaking, and custom classes
added into JRuby to make it run properly on Android

* |terates through all classes in target application’s classloader chain
* Selectors use config values to pick from available classes

* Uses Xposed to set up hooks on matching classes/methods

The Xposed hooks invoke the config-specified JRuby 5
V-

Hooks

Instant ramen hook

The JSON config format is a work in progress, but works well enough.
{

"classes": [

{
"name": "android.support.v7.app.AppCompatActivity",
"methods": [
{
"name": "findViewById",
"params": ["int"],
"returns": "android.view.View",
"eval": "puts 'id: ' + args[0].to s; return;"
}
1,
"eval": "puts 'in ' + method.to s;"
}
1,
"eval": ""

Hooks — Configuration
"Jay Sahn”

More involved hooks should be broken out into a separate Ruby file.

{
"classes": [
{
"name": "okhttp3.0kHttpClient$Builder",
"methods": [
{
"name": "build",
"eval _file": "okhttp3.O0kHttpClient$Builder::build.rb"
}
1
}
1
}

Hooks — Code

"Jay Roo Bee”

this.proxy(java.net.Proxy.new(
java.net.Proxy::Type.valueOf('HTTP"),
java.net.InetSocketAddress.new(’'127.0.0.1,8080))

)

this.certificatePinner(
Java::Okhttp3. CertificatePinner::DEFAULT

)

trustAllCerts = Class.new() {
include javax.net.ssl.X509TrustManager
def checkClientTrusted (chain,authType)
end
def checkServerTrusted(chain,authType)
end
def getAcceptedlssuers()
[1.to_java(java.security.cert.X509Certificate)
end
}.new

ctx = javax.net.ssl.SSLContext.getInstance('SSL")
ctx.init(
nil, [trustAllCerts],
java.security .SecureRandom.new
)
socketFactory = ctx.getSocketFactory ()

this.sslSocketFactory(socketFactory, trustAllCerts)
verifier = Class.new() {

include javax.net.ssl.HostnameVerifier

def verify (hostname, session)

true

end
}.new
this.hostnameVerifier(verifier)

return

-

Performance Tricks

JRuby Initialization

* Pre-dexed JRuby jar is loaded into the classloader during Zygote init
» Due to SEAndroid policies, stores this file under /data/dalvik-cache/paraspectre

* Zygote can read from it, runtime root can write to it
* Due to race conditions inherent in Android’s boot sequence, attempting to initialize a
JRuby script container in Zygote deadlocks the system due to Zygote taking too long to
initialize
+ Dianne Hackborn, please save us from this darkness®
* As a result, JRuby scripting containers are initialized separately in each hooked app

* This is time consuming
* But we can kick this off in a background thread at the Xposed entry point in app start

* The initial run of Ruby code in an initialized container takes several seconds to run
* Post-init, a Ruby hook script of "return;” is eval’'d in the container to prep it before use

%.

®Also, can you kill D-Bus and replace it with binder?

Performance Tricks

Class searching and matching

* Various performance tricks played in scanning classes for matchers
» To search, it needs to iterate through the list of loaded classes

Save time here by only iterating through class names in app’s own DEX files

* Normal ClassLoader: :loadClass hits a worst-case path where it searches through the
parent classloader for framework classes

.

Bypassed this by yanking out the protected
dalvik.system.BaseDexClassLoader: :findClass method and invoking it directly
= Still running into the classloader global lock
* This prevents multithreaded class iteration, and actually makes it less performant due to lock
contention

.

May eventually parse DEX files directly to get metadata for matchers

-

Performance

Results

* JRuby container initialization went from 29 seconds of startup overhead to being
nigh-instantaneous*
* Class matching overhead is generally unobservable on single DEX applications

+ com. facebook.katana’ has 12 classes.dex files comprising about 100k classes; it is
not a slender blade
* Class iteration (not performed if class matchers are specified by name) takes 30 seconds
* Once iterated, the matching set of classes (logged to logcat) can be specified by name in
the config

7Literally the biggest Android app | can think of.

%.

Performance

Caveats

If a hook runs automatically on startup, it may have to wait for the initial JRuby container to
be fully initialized, which can take up to 6 seconds on a "modern” Android device®

* This runs in parallel to any class searching, which fully blocks app startup to prevent
target methods from running unhooked

%.

8All Android performance numbers come from a Nexus 5X.

Performance

Speed and Latency

* Overall though, the edit workflow is two orders of magnitude smaller than writing raw
Xposed hooks
» Edit Java code (?7?)
* Compile Java code as an Android app (30s+)°
» Copy APK to mobile device (10s+)
* Install APK (30s+)
* Reboot phone (2-3 minutes if the device is encrypted and has a PIN)

°All laptop performance numbers come from a Late 2013 13” MacBook Pro.

Demos

Where?

Soon

https://github.com/nccgroup/paraspectre

ALL IN GOOD TIME MY LITTLE
PRETTY

2 '
X
, ALLIN GOOD TIME

‘!’
o ¥
|

c

https://github.com/nccgroup/paraspectre

Current Limitations

Caveat emptor!

* The DRuby protocol is scary, a hooked app (as it can authenticate) can potentially gain

RCE on the host running the pry-remote-based client

* For now, it's probably best to run the REPL client from a VM
* Long term solution involves research into DRuby
* Medium term solution involves sandboxing the client

* Adding gems is not supported yet, and requires manual bit twiddling

%.

Future Work

Fixing the limitations

* Gem JAR file upload API

* Overhaul the Ul for creating, editing, and managing hooks
* Android 7/N+ compatibility (once Xposed supports it)

* Current world-readable config file implementation may break due to SEAndroid changes

* Google’s workaround uses the Android support library, not a standard class

» Leveraging root access to edit a shared config in the /data/dalvik-cache/paraspectre
directory is ugly, but feasible

* Figure out the DRuby situation

%.

Greetz

Here's to all the little people...

- aleks
- arkos
- bones
- justin
- nabla
- niko

- weber

%.

Questions?

jeff.dileo@nccgroup.trust
@ChaosDatumz

%

Ghost in the Droid

Possessing Android Applications with ParaSpectre

Jeff Dileo (chaosdata)
DEFCON 25

%.

	Introduction
	Motivation
	Original Plan
	Android Function Hooking 102
	ParaSpectre
	Demos
	Future Work

