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Shoutz

●         KRT_c0c4!n3 (art)
●         Fat Cat Fab Lab (where I hack)
●         NYC2600 (who I friend)
●         DC201 (Because DEF CON)

- My girlfriend KRT_c0c4!n3 (art director) did a good 

portion of the art of these slides

- I worked on most of my code and all of these slides 

from Fat Cat Fab Lab. It's my favorite hackerspace in 

the NYC area (West Village)

- NYC2600 is my local 2600 community and where 

I've made most of the friends I have in NYC

-DC201, because it's the closest active DEF CON 

group in my area



  

 

Even as a kid I wanted to do low level 

programming. I had no access or 

knowledge of compilers or even major 

programming languages. I deep down 

felt like I should be able to type the right 

binary data into a notepad (or 

something like it) and run it, but all I had 

was just some Windows 3.11 and 

ignorance



  

 

I eventually did end up typing hex into debug (comes 

with Windows 3.11+) and executed my program live 

at CactusCon 2016

Deck at http://xlogicx.net/?p=515



  

 

I eventually try to teach myself Z80 assembly. This is 

because I already had a TI-82 and already tried 

some sweet games programmed in assembly.

The first program I made was an example program 

that clears the screen. My first attempt to make my 

own program cleared the memory. This was 

unintended...



  

 

I then formally learn Assembly for the M68HC11 

microcontroller in school. I don't even remember if 

we had a textbook, but we did have the Motorola 

manual. This manual listed all of the instructions with 

the machine code next to the instruction.

I had a lot of fun with this architecture. Inspired by 

Godel Escher Bach, I attempted to create a program 

that replicated itself into the next area of memory and 

executed itself. I learned the importance of needing 

to understand the abstraction layer of machine code 

in order to pull this off. Also, the assembly language 

and machine code for this architecture was relatively 

one to one.



  

 

Propeller Assembly

After using various micro-controllers, I start to crave 

more capabilities and want to find a way to do 

floating point math in a sane way. LoST eventually 

convinces me to try this new Propeller micro (well it 

was new back then in 2006). I ended up not using it 

for what I had planned, but made an audio driver 

instead. The performance of this project required the 

use of Propeller Assembly (instead of the 

recommended high level language: SPIN). This 

architecture was pure beauty, and the relationship 

between the machine-code and assembly language 

was practically one to one for all intents and 

purposes. I'm still waiting on Chip Gracey to finish 

Duke Nukem Forever (...I mean the Propeller II)



  

 

X86 Assembly

Then, a matter of years ago, the company I was 

working with before voluntold me to take GREM 

training (GIAC Reverse Engineering Malware). This 

is the context in which I eventually learned the x86 

architecture for assembly language. I learned that 

the language was the most terrible assembly 

language I've ever seen up to this point; which made 

it all that more beautiful.

And those manuals in the screenshot, I’ve read them 

all, cover to cover.



  

 

Introducing:
InfoSec Bro

This is just how I picture most infosec bros; a Kenny 

Powers like character.



  

 

● "Assembly refers to the use of instruction 

mnemonics that have a direct one-to-one mapping 

with the processors instruction set"  



  

 

● "However, everything in the end is assembly, and 

that is just fixed sequences of ones and zeros 

being sent to the processor"



  

 

● "...that is to say, there are no more layers of 

abstraction between your code and the processor"



  

 

This book had all of the above quotes. This book is 

also apparently all around terrible in many other 

ways. But don't just take my word for it...(next slide)



  

 

Best Review Ever

This review was from one of the authors of this book!



  

 

Kitteh Demo

Running the demo kitteh program to show what it 

does

Quickly running through the source to show the 

vulnerabilities

Exploiting the program to get a 'shell'

Showing the important line of assembly being 

exploited, and how the actual machine code cannot 

be produced by nasm_shell

The screenshot in this slide is for the PDF version, it 

is only a hint at what will be demonstrated



  

 

Tools Used in Talk

● m2elf.pl – Converts machine code to ELF 
executable

● Irasm – Like nasmshell.rb (but does the stuff 
that this talk explains
● It’s also not a shell, it’s an assembler written in 

Ruby

I will likely be flying in and out of these tools during 

this talk. Not as legitimate full demos, just a few 

seconds here and there to illustrate the points.

M2elf is a tool that I created that takes hex or binary 

(1's and 0's) in an input file and converts it into a fully 

ELF executable. For the purposes of this 

presentation, I will be running it in 'interactive' mode; 

it takes machine code input and immediately displays 

the instruction it represents (instruction by 

instruction)

Irasm is like nasmshell.rb, only irasm is not a shell, 

it's an assembler. Instead of just displaying official 

machine code, it outputs a bunch of redundant 

machine code as well (as discussed in this talk)



  

 

  

Assembly  Machine Code↔

● ADD AL, imm8
● Adding an 8-bit value to the 8-bit AL 
register

● 0x04 is opcode for 'ADD AL' followed by 
byte to add

Let's talk about what people are thinking 

about when they erroneously say that 

assembly language and machine code have 

a one to one relationship.

We can say that if we add the byte of 0x42 

to the AL register (ADD AL,0x42). The 

machine code will be 0x0442 (0x04 for ADD 

and 0x42 is the byte).

This means that if we wanted to add 0x33 to 

the AL register, the machine code would be 

0x0433

You see the correlation right?



  

 

  

Assembly  Machine Code↔

● INC, 32-bit Register
● Increments a 32 bit register
● These registers come in the following 
order:

● EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

This one is a little more complicated 

but not that bad. All of this increment 

(INC) instructions start with a 0x4 

nibble, and the next nibble 

corresponds to the register you want 

to increment. Since EAX is first, INC 

EAX is just 0x40.

This is unless we are using a 64 bit 

processor, then the 0x40 is a prefix 

byte, different story all together 

though.



  

 

  

Assembly  Machine Code↔

● MOV r8, imm8
● Move a byte into an 8-bit register
● These registers come in the following order:
● AL, CL, DL, BL, AH, CH, DH, BH

Similar to the last two instructions. This is a group of 

MOV instructions where 0xB is the first nibble 

representing MOV, and the next nibble represents 

the register. Finally, the byte that follows is the byte 

to be moved to said register.

But wait, there's a 0xC6 format that allows us to add 

a byte to a more complex data structure that includes 

memory pointers AND also registers (and because 

this structure supports registers, we find a 

redundancy here)

Knowing all of this, if you did: mov al, 0x44

Your assembler (and nasmshell) would output: 

0xB042

It wouldn't output 0xC6C042

But the irasm tool will



  

 

AAD (ASCII Adjust AX 
Before Division)

● The assembly for this is too high 
level

● The machine code is also too high 
level

● Even the mathematical concept is 
too high level!

● Or, how to do base1 and base0 math
● Supposed to do Base10 conversion

I love the AAD instruction. It says it does a thing. But 

the thing it actually does to do the thing it says it 

does is far more interesting. The next several slides 

go into depth of these things.



  

 

AAD – What it Does

This instruction takes the value of AX (two bytes).

It breaks them out and considers them to be two 

decimal numbers (base10).

Regardless of the misleading '+' symbol in the slide, 

it combines the two digits as if the zeros weren't 

there.

The result is considered a base10 value. It's 

hexadecimal representation is stored back into AX. 

This really means that it is stored into AL and AH 

gets wiped. Because even the largest decimal value 

of 99 would still fit into AL as hexadecimal.

This style of slides are animated; they will look a little 

weird in the PDF version.



  

 

AAD – Assumptions

● The entire value is 16 bits
● The two halves make up 8 bits (07 and 09)
● Being that the values are converting from 
base 1

● The two halves need to be from 00-09
● Even though 0A-FF are valid 8 bit values

To think like a hacker for a second, think of the 

context of what goes wrong when you don't do input 

validation and the things that could go wrong.

In AX, you're supposed to have a decimal (0-9) value 

in AH and AL. However, each of these registers could 

actually be in the range of 0x00-0xFF



  

 

AAD – Debugged

● 0709 moved into the 16 bit register (ax)
● AAD performed
● The ‘A’ (al/ah/ax/eax) register now contains 
004f

● The AAD mnemonic is interpreted by all 
assemblers to mean adjust ASCII (base 
10) values. To adjust values in another 
number base, the instruction must be hand 
coded in machine code (D5 imm8)

The interesting thing here is that the real machine 

code for the opcode of AAD is just 0xD5, the next 

byte is actually not part of the opcode; it's an 

operand. It just defaults to 0x0A (or 10 in decimal). In 

assembly, you can only type 'aad'; you can't give it 

the base you want to use because base10 is 

assumed.

However, if you write this instruction in directly in 

machine code though, you can actually choose a 

different base and the high level mathematical 

concept works out.

Assembly, it's too high level



  

 

AAD – Base 6

This is us working through an example of choosing 

our own arbitrary base of 6.

Our character set for base6 is from 0-5.

Cramming 3 and 5 together gives us 35.

This instruction needs to convert 35 (base6) to a 

hexadecimal (base16) value.

35 in base10 is actually 23 = ((3 * 6) + (5 * 1))

23 in hexadecimal is 0x17

It's amazing, it all works out!



  

 

AAD – Base 2

Let's do base2

We cram 1 and 1 together and get 11

11 in binary is 3 in decimal which is 0x03 in 

hexadecimal

So this works too.



  

 

Let’s Hack: Invalid Input

● Remember base 10, we were limited to 00-09?
● What happens when we use the values in the 0A-FF 

range?
● Do you know what base 1 or even base 0 means?

● Neither do I, so what happens?

This is an introduction slide for us to try some real 

ignorant things and to attempt to make some 

meaning out of it



  

 

AAD – Base 10, Input Beyond Range

This is us going far above base10 values in AX 

(AH/AL), but then specifying base10 for the aad 

instruction.

It's hard to visualize cramming 5 and 6F together, but 

the slide does it's best to make something of it.

By the process of magic (whatever AAD is actually 

doing), we get the result of 0xA1.

0xA1 is then stored back into AX



  

 

AAD – Base 1, I guess that’s a thing…

What about base 1?

Well, our only valid character is zero, so:

Cram 0 with 0 to get 0 to convert to 0 and store 0 

back into our register that already had 0.

Pointless, but at least it makes sense and we know 

whats going on here I guess.



  

 

AAD – Base 0, That can’t be a thing

Then there's base0. There is really no valid character 

for this, so I just made AX 0xBEEF.

We cram it together, and by the magical process of 

AAD we get a result of 0xEF and store it back into 

AX.



  

 

It really is fine though, because microcode



  

 

Machine Code:
Too High Level

● What’s actually happening under the Hood?
● Microcode

● Intel’s PseudoCode for AAD:

This screenshot from the Intel manual shows what is 

actually happening under the hood.

It's not literally a base conversion, just some 

mathematical operations (an 'algorithm') that happen 

to perform the conversion when you don't feed it 

garbage.

This is fucking profound. Mathematics is not reality, 

it's just a model for it sometimes. Don't take math too 

seriously, math is stupid.



  

 

A More Simple Formula

● AL = AL + (AH * base)
● Where:

● AL is the last 2 bytes of input
● AH is the first 2 bytes of input
● Base defaults to 10 (but we can machine

hack that)

This is a better representation of what the Intel 

pseudo-code is doing. It's actually pretty elegant 

looking. It's also pretty cool that something so simple 

can 'convert' 'bases' so easily



  

 

A New Understanding

● AL = AL + (AH * base)
● 0709 (base10): 09 + (07 * 10) = 4F (79 decimal)
● 0305 (base6): 05 + (03 * 6) = 17 (23 decimal)
● 0101 (base2): 01 + (01 * 2) = 3 (3 decimal)
● 056F (base10): 6F + (05 * 10) = A1 (161 decimal)
● 0000 (base1): 00 + (00 * 1) = 0 (0 decimal)
● BEEF (base0): EF + (BE * 0) = EF (239 decimal)

For fun, we use this simple formula to crunch through 

all of the examples in the previous slides to see that 

the formula does crunch out the answers that we 

expect them to.



  

 

How is this Useful

● We have a new certain way to clear AH
● Old way number 1: mov ah, 0
● Efficient Compiler way: xor ah, ah
● Our new stupid way: db 0xd5, 0x00

● Or AAD base 0

All kidding aside about clearing the AH 

register, it's cool to know that we can do 

conversions in obscure bases with one 

instruction. It's even cooler that the way 

to implement it is even more obscure: 

you have to do it in machine code

...because assembly is too high level



  

 

MODR/M + SIB

• Allows you to do various encodings with registers

and memory
• Memory encodings is where it gets interesting

(complicated)
• Already complicated enough, even without the

redunds

This can be some rough terrain right here. Not 

having to manually do this encoding should make 

people appreciate assembly language as a super 

high level language that makes things easier for the 

programmer. We will be treading this terrain in the 

next 30ish something slides!

This encoding is used to allow the programmer to 

use registers and memory pointers as operands



  

 

Memory Pointer Format

● Things you can use in a pointer:
● Register (base register)
● Register multiplied by 1, 2, 4, and 8 (scaled)
● A 8bit or 32 bit offset (displacement)

● All of these are optional
● Examples:
● [eax + ebx * 2]
● [ebx + 0x33]
● [ecx * 8 + 0x11223344]
● [0x33]

In a memory pointer, you can have a base register, a 

scaled register, and a displacement. They are all 

optional, but you at least need to use one of them 

(otherwise it would be nothing at all)

Of the registers, you have the 8 general purpose 

ones to choose from (with some major exceptions)

If eax is 0x11223344, XOR [eax], eax will XOR the 

value of eax with the value in the address of 

0x11223344 and store it at that address

You can also add to the address of that pointer with a 

displacement. [eax + 0x42] would be [0x11223386] 

(considering what eax originally had above)



  

 

MODR/M Table

This is the machine encoding table that makes it all 

happen (well half of it, the other half is the SIB byte 

when required).

The MODR/M Table allows for encoding operands as 

a register, a pointer with one base register, a pointer 

with a base register and a 8 or 32 bit displacement, 

or just a 32 bit displacement.

If you want to have a scaled register or mix and 

match the above with a scaled register, then you 

need the SIB byte (selectable from this table)

As always, there are many exceptions



  

 

XOR EAX, EDX (0x31D0)

In this slide we work through an example, because 

we like to explore more than just theory.

In most of our examples, we will use the 0x31 

machine opcode for XOR (there are exceptions 

when we cover redundancies). It's the XOR r/m32, 
r32 encoding (so �rst operand can be register or 
pointer and second operand has to be a register, 
both 32 bit)

In the table, we line up EAX with EDX to get our 
0xD0 value for the operand information for our 
machine code.



  

 

XOR [ECX], EAX (0x3101)

Next we do a pointer for the first operand. Note we 

are still starting with the 0x31 encoding for XOR

We are using the pointer of [ECX] for the first 

operand and EAX for the second operand. All we 

have to do is line them up to arrive at the 0x01 byte 

for the machine code byte to encode this. It's just as 

straight forward as the last example



  

 

XOR [ESI + 0x42], EAX (0x314642)

This one adds one little extra bit of complexity.

We first start with our 0x31 for XOR. Next we have a 

pointer of [ESI + 0x42] and then EAX.

EAX is easy to line up at the top. For the first 

operand, we need to find a line that supports ESI 

plus a 1 byte displacement. It is shown in the 

screenshot as 0x46

But we aren't done, the processor then expects the 

next byte of the instruction to actually be that offset, 

so the 0x42 displacement comes as the next byte



  

 

XOR [EBX + 0xFFF31337], ESP (0x31A33713F3FF)

If the previous example made sense, this one should 

be just as easy.

We need to find a pointer that supports EBX plus a 

32 bit displacement and the register of ESP. When 

lining this up on the table, we find that it is 0xA4.

The only thing that may appear confusing to those 

that don't know is that Intel encodes addresses in 

Little-Endian form. This is just another way to say 

that bytes are in backward order. So 0xFFF31337 

becomes 0x3713F3FF after our machine code of 

0x31A3.

This makes the entire instruction: 0x31A33713F3FF



  

 

XOR [0x42], EAX (0x310542000000)

This is looking at not using any registers for our 

pointer. This examples just demonstrates a literal 

displacement of 0x42.

We need to find the horizontal line that encodes for 

only a displacement and the vertical line for EAX. 

There are no horizontal lines for just an 8 bit 

displacement, so we are forced to use the 32 bit one 

and just pad the first 3 bytes with nulls.

So we have our 0x31 for XOR, 0x05 for the operand 

encoding from the chart, and 0x42000000 for the 

displacement data (ordered like that because Little-

Endian)



  

 

xor [ebx + ecx * 4 + 0x42], eax (0x31448B42)

Now we start to get a little crazier; we are going to 

use a scaled register.

Lining up the second operand of EAX on the chart is 

easy. To use a scaled register, we need the SIB byte, 

which is one of the horizontal options using [--][--]. 

There are 3 different variations of this SIB option, 

one without a displacement, one with an 8 bit 

displacement, and another with a 32 bit 

displacement. In this case, it's just the 8 bit 

displacement. So we choose 0x44 in this table, and 

then look next to our SIB table to pick the actual 

Base and Scaled register 



  

 

xor [ebx + ecx * 4 + 0x42], eax (0x31448B42)

The Base register will be the vertical line and the 

Scaled (multiplied register) will be the horizontal line. 

Finding EBX (vertical base register) is the easiest.

For the horizontal line, we must find the item that 

uses ECX and is also * 4. This is actually not terribly 

hard to find on the table either.

When you line this up, you get 0x8B for the SIB byte.

Finally, we have the displacement of 0x42 to add to 

the end of the instruction to get our final result



  

 

XOR [ESP], EAX (0x310424)

Now lets dig into some weird exceptions; lets start 

with using ESP as the base register in a pointer. 

When looking at the table, ESP isn't an option?

However, we know from the SIB byte that you can 

choose a Base register, although you have to choose 

a Scaled register as well. But did you notice from the 

table on the last slide that 'none' was an option for 

the Scaled register. That's the hack that assemblers 

use.

For the MODR/M byte, we line up EAX for the 

vertical and the [--][--] (SIB) for no displacement. This 

gives us 0x04 for our MODR/M byte.

Next let's look at what we do with the SIB byte.



  

 

XOR [ESP], EAX (0x310424)

Since ESP is our Base register, we line that up 

vertically. We choose the first 'none' horizontal line 

for the Scaled register to give us 0x24.

So what's the difference between that 'none' and the 

3 others. There isn't any in this particular case, 

hence the next slide



  

 

XOR [ESP], EAX (0x310424), 
With All the 'NONEs'

In this slide we see the PoC of using all 4 of the 

'none' options in the SIB byte. This is to note that the 

assembly is the same for any of these



  

 

Using SIB When You Don't Need To

In the last example, we needed to use the 'none' field 

in the SIB byte because ESP wasn't an option for the 

base register. However, we can still use this 

ignorance when the base register is already an 

option in the MODR/M table.

In this slide, we are showing that we are using this 

encoding with EAX. Keep in mind that we can still 

use any of the 4 'none' bytes



  

 

Gratuitous SIB

In this screenshot we first see how an assembler 

'should' encode XOR [EAX], EAX. The last 4 

instructions are the various ways we can encode it 

with the pointless 'none's in the SIB byte



  

 

XOR [ESP * 2], EAX (0xNOPE)

What's the exception to use ESP as a Scaled 

register? as we didn't notice it as an option in the SIB 

byte encodings. It's because you can't. You try to 

write this above instruction and your assembler will 

give you an error and make you feel bad.



  

 

XOR [EBP + EAX * 2], EAX (0x31444500)

This instruction has a base register of 

EBP and a scaled register of EAX * 2. 

Vertically aligning the 2
nd

 operand of 

EAX is easy. Since we are using a 

scaled register, we need to find the 

appropriate [--][--] line horizontally.

One would think that we would pick 

0x04, but that is not the case, we need 

to pick 0x44 due to some EBP base 

register complications in the SIB byte 

that we are about to explore on the next 

slide



  

 

XOR [EBP + EAX * 2], EAX (0x31444500)

Lining up the horizontal line for the scaled register of EAX * 2 is 

straight forward. However, we don't find an obvious EBP base 

register on the vertical line. It's the [*] line that actually gives us 

what we need.

The [*] line is dependent on the displacement option we pick from 

the MODR/M byte. There are only 3 variations; no displacement, 

8-bit displacement, and 32-bit displacement. The results are as 

follows:

No displacement = [ScaledReg * n + 0x11223344]

Disp8 = [EBP + ScaledReg * n +0x11]

Disp32 = [EBP + ScaledReg * n +0x11223344]

Either of the last 2 options would technically work, but we chose 

the 8-bit displacement option because it would get encoded in with 

3 less bytes.

So finally, we arrive at the 0x45 byte in our table. However, we 

aren't done until we actually put the 0x00 byte at the end, because 

this is our 'invisible' displacement This means that our assembly 

would more literally be interpreted as such: XOR [EBP + EAX * 2 + 

0x00], EAX



  

 

Implied Scale (* 1)

• Consider [eax + ecx]
● You can't have two base registers; one has to 

be scaled
• Assemblers viewed a 2nd 'base' register as 

scaled by '1'. So:
● [eax + ecx * 1]

There are things we take for granted when only 

writing in a high level language like assembly. If you 

type a pointer like [eax + ecx], the thing to consider is 

that there can only be one base register.

An assembler (like nasm) is going to look to your 2
nd

 

register to encode as the scaled register; the 

assembler will treat [eax + ecx] more literally as [eax 

+ ecx * 1]. Or it will make ecx the scaled register and 

scale it by 1.



  

 

Convert Scaled to Base

• Consider [ecx * 1]
● Encoding for SIB requires more bytes

• If there is no base register already:
● Assemblers will convert a scaled by '1' register 

as a base. So:
● [ecx]

It's one thing to have something like [ecx * 4]. It is 

unambiguous: there is no base register and we need 

a scaled register of ecx * 4.

[ecx * 1] on the other hand, assemblers don't do 

what you asked for here. If you don't pick a base 

register, and your scaled register is scaled by one, 

your assembler is just going to make it the base 

register.

My instinct is to get annoyed with this, as my 

assembly is being interpreted into machine code that 

I didn't intend for, as I would have and could have 

written [ecx] if that's what I wanted. The reason an 

assembler is going to choose this because it takes 

less bytes to encode (because it doesn't need the 

SIB byte).



  

 

ESP * 1

• You CAN'T scale ESP

• You write [eax + esp *4], you get an error
• You write [eax + esp * 1] or [eax + esp]

● You Dont?

• This is because the assembler converts it for 
you behind your back to:
● [esp + eax * 1]

So we know that we can't use ESP as the scaled 

register. This is why if we write something like [eax + 

esp * 4] we will get an error. But why do we not get 

an error if we write [eax + esp * 1]?

Well, if you were to assemble this and then 

disassemble it, you would discover that your 

assembler actually writes this as [esp + eax * 1].

In other words, if esp is scaled by only one, and the 

base register itself is not also esp, it will make the 

base register the scaled one so esp can join back in 

as the base. It logically does the same thing.



  

 

Ignores You, Chooses Less Bytes
Sometimes

• This is about the commutative property, it works 
with 6 of the 8 general purpose registers, like 
this:

• It does work with EBP, but differently:

• And doesn't work with ESP, because ESP 
doesn't scale

Speaking of swapping around the registers, this is the 

commutative property in mathematics (because addition). 

We can do this no problem with eax, ecx, edx, ebx, esi, 

and edi.

esp is a register that can't be swapped, because of its 

scaling issues as previously discussed.

We also discussed the trade-off that needs to be made 

when using ebp in the SIB byte, so we do this at the cost of 

having to add the extra disp8 null.

However, the most interesting part of this is that if you use 

[ebp+eax] in your assembly, it will take you literally If it did 

[eax + ebp] (logically the same), it would actually take 1 

less byte to encode, but it doesn't opt for less machine 

code in this case. Just goes to show that sometimes an 

assembler optimizes for this kind of stuff, but not always



  

 

Put a Null in it

• If a pointer doesn't have a displacement, then 
put in a displacement of 0x00...same difference 
right

• If there's an 8 bit displacement, make it a 32 bit 
displacement with 3 bytes of leading nulls

For instructions that don't already have 

displacements, there's nothing from stopping us from 

being a troll and adding a displacement of nothing 

(0x00). We can add an 8-bit or a 32-bit displacement 

with nothing in it and the memory pointer would be 

logically the same.

Additionally, if we have an 8-bit displacement, we 

can 'upgrade' it to 32-bit by padding 3 null bytes in 

front of it.



  

 

Put a Null in it w/ the 
Commutative Property Too

• Add a null to it and swap registers

• Add 3 nulls to it and swap registers

Of course you can get creative and mix and match 

these redundancies.

This slide shows us mixing the 'null upgrade' with the 

commutative property



  

 

Basic ModR/M Redundancy

This redundancy works because x86 generally has no 

instructions that allow for both operands to be a memory 

location in the same instruction.

For instance, if your instruction was 'mov', you could move 

a value of a register into a memory location, you could also 

move the value in a memory location into a register, but 

you could never move the value of a memory location into 

another memory location (with only one instruction).

Because of this, you need an encoding for each scenario. 

However, the operand that allows for a memory pointer 

also allows for it to just be a register as well (allowing 

register to register).

This means that both encodings allow for register to 

register. This is where the redundancy comes into play and 

why we can see something like the above screenshot.



  

 

Basic ModR/M Redundancy

In the previous slide it seemed like magic that we 

could just swap out the machine opcode and leave 

the operand data (0xC0) alone. This isn't always the 

case. With the different encodings, the vertical and 

horizontal parts of the table get swapped. But in the 

case of using the same register with itself, it's 

symmetric enough to not change the value in the 

table.



  

 

NASMs Interpretive Dance 
in SIB

• Or how 'eax * 2' is the same as 'eax + eax'
• And way more unusual things

This is another byte saving optimization. 

The next slide will follow the maze of the 

MODR/M + SIB byte to find out why



  

 

NASMs Interpretive Dance
in SIB

So in the top 2 screenshots, we are comparing two 

different assembly instructions to the machine code 

nasm outputs on the right. Notably, both instructions 

are converted to the [eax + eax] form. It is logically 

the same as [eax * 2], what does nasm have against 

scaling eax?

It is because of the side effects of not having a base 

register when using SIB. You can have 'none' for a 

scaled register, but having 'none' (or [*]) for the base 

register comes at the cost of having to use a 32-bit 

displacement. This was covered a few slides back 

(the 3 options the [*] uses).

If we take [eax * 2] literally, it doubles our machine 

code for the instruction. Assemblers do not see this 

as ideal



  

 

NASM is Tolerant to
UR Bullshit

But what's really interesting is what kind of bullshit 

assemblers like nasm will put up with.

First of all, there is no scale of * 5; only 1, 2, 4, and 8. 

But nasm is smart enough to look at this instruction 

and decide it is logically the same as eax + eax * 4

Finally, scaling by something non-existant is one 

thing, but there is no such thing as subtraction in our 

pointer format, but it is valid assembly to nasm. 

Nasm is smart enough to look at [eax * 2 – eax] and 

know that it is pretty much the same thing as just 

[eax]

I love nasm



  

 

TEST r32, r/m32

• TEST 32-bit register with a 32-bit register OR 32-bit memory

location
• This form can be written in Assembly Language
• But there is no machine code representation of it

I like this one. This slide is saying that you can write 

something in assembly like: TEST EAX, [EAX]

The thing is, there is no machine encoding to 

represent this. We previously discussed how we 

needed more than one encoding to mitigate being 

able to use a pointer for the source or destination. So 

what's going on here?

We will explore in the next couple slides



  

 

CMP r32, r/m32

This slide shows the two different encodings of the 

cmp instruction with 32bit operands.

The last 2 screenshots compare the source 

assembly with the resulting machine-code in a 

debugger.



  

 

TEST r32, r/m32

If we write the assembly shown on top, we get 

machine code comparable to the middle image.

What we see here is that the first instruction gets 

interpreted and converted by swapping the operands 

around to its only supported encoding. That is, Test 

r/m32, r32.

We see the encoding for this in the Intel manual (last 

image). Trust me, there is not corresponding 

encoding for the operands swapped around like 

other sane instructions.

So can we swap these operands and logically have 

the same results?



  

 

But Why?
● Review:

● CMP = SUB (just for flags)

● TEST = AND (just for flags)

● 5 - 3 = 8

● 3 - 5 = -2

● 5 AND 3 = 1

● 3 AND 5 = 1

The answer is yes. We compare CMP and TEST to see why.

Both of these instructions act like a math/logic instruction but 

without storing the result; it just does the instruction for the side 

effect.

CMP is like subtraction and TEST is like a logical AND. CMP 

doesn't SUB though, nor does TEST do an AND. They just set the 

flags so conditional jumps can have more intelligent behavior

If you try to do some commutative stuff, you see subtraction 

obviously isn't commutative, swapping the operands gives you 

different results.

TEST (and AND) on the other hand are commutative, swapping 

the operands gives the same result. Therefor you only really do 

need one encoding to represent both orders. So assemblers look 

at your un-encodable instruction and converts it into something 

that does the same thing



  

 

Redundosourus REX

This is just a 64-bit prefix hack. In order to access all 

of the extra registers that come with 64 bit 

processors, but also remain backwards compatible, 

Intel chose to prefix instructions with a byte that 

would change what the registers end up being.

Of course, some of the old registers are also 

encodable with the prefixes, and of course there are 

many redundancies to this; as the image of this slide 

demonstrates.



  

 

Redundant Fencing

There are 3 different types of 'fence' 

instructions, each of them have the 

recommended machine code.



  

 

Redundant Fencing

We can see that the suggested machine code is 

dutifully used when comparing the assembly source 

and the machine code output from the disassembly



  

 

Redundant Fencing

However, there is a lot of redundancy on this one. It 

so turns out that Intel suggests that this can be done 

with direct machine code. There's no real benefit to 

using any of these alternate encodings, however.



  

 

Intel Says This is Okay

This is the part of the Intel manual that suggests you 

can use the extra 7 other end nibbles for these fence 

instructions.



  

 

'Inst Reg, Imm' Redundancy

In similar fashion to the very first redundancy 

explored in this presentation, there are many 

instructions that have an encoding for putting an 

immediate value into just the AL/AX/EAX register. 

This is because this register is so common, might as 

well have reduced machine code for it.

There is also the more generic encoding that allows 

for putting an immediate value into a MODR/M+SIB 

encodable operand. The redundancy comes in 

because AL/AX/EAX can be one of those options. 



  

 

'Inst Reg, Imm' Redundancy

This slide shows all of those redundancies



  

 

Redundant Bit Instructions

Speaking of doing something so common that Intel 

provides a direct smaller machine code encoding for 

it; bitwise instructions like rotating and shifting are 

often done by just one bit. Because of this, there's a 

shortcut to have the immediate operand be just '1'.

There is also the more generic 8-bit immediate 

operand. But obviously '1' is a valid value in this 

encoding as well.



  

 

Redundant Bit Instructions

So this is the image of showing all of those 

redundancies



  

 

Branch Hints

There's no real good reason to manually use a 

branch hint. There's also no way to do it directly with 

assembly.

However, you can manually machine the prefix in 

front of a branch instruction. It wont really affect 

much, but hey, you can (when you can't in 

assembly).



  

 

Intel Hides SAL

● SAL = Shift Arithmetic Left

● Does the same thing as Shift Left 
(SHL)

● Therefore, everything is SHL

Similar to not having our assembly converting our 

TEST instruction to a equivalent form; SAL(Shift 

Arithmetic Left) gets converted to SHL(Shift Left). 

SAL and SHL are technically equivalent. The Intel 

manual recommends this and assemblers obey it.

The difference here is that there really is an encoding 

for SAL, and it is functional.



  

 

Intel Hides SAL

Here is our assembler converting our SAL instruction 

in assembly to SHL when it gets to machine code.

Note that even the machine code in the Intel manual 

is the same for SHL and SAL.

We will get to this next, but the /4 represents the 

specific instruction, where the D0 represents the 

group of instructions. For instance, /5 would be SHR 

(Shift Right).



  

 

Intel Hides SAL

This table shows all of these /n numbers. We see 

that under '100' or /4, SHL and SAL are combined.

More interestingly, we notice that '110' or /6 is empty.

There is no way to mess around with this in 

assembly language, but we can do this directly in 

machine code to see what happens.



  

 



  

 

Using SAL

It is SAL. After testing it, it works. SAL unlocked!



  

 

Hidden TEST

There's an encoding under the machine code of 

0xF6 (8-bit) and 0xF7 (32-bit) for the TEST 

instruction, as in TEST EAX, 0x11223344.

We will use the 32-bit encoding for this example. 

This is a /0 encoding, to mean TEST, as in /2 would 

mean NOT and /3 would mean NEG and so on.

You'll notice there is a blank spot in this table that 

would have an instruction for /1. It so turns out that 

this is also a TEST instruction. If you machine 

encode this, the processor will run this exactly as the 

/0 test.

Your mileage will vary depending on the 

disassembler you use, for whether it tells you it is a 

TEST instruction or not...



  

 

Hidden TEST

In the case of the EDB (Evans Debugger), the 

instruction is not disassembled showing the 

TEST it actually is. We instead see a dw (data 

word directive) of 0xc8f7 and then a mov 

instruction.

This 'mov' instruction will never run because it 

doesn't exist, it is actually part of the operand 

data of the TEST instruction. This instruction 

should be:

TEST EAX, 0xeeddccbb

This TEST instruction is what the processor will 

actually execute



  

 

Load InEffective Address

What the Load Effective Address does is stores the 

pointer address into a register. So not the value of 

the address into the register, but the actual address 

that the pointer would point to.

In the above example, we are running: LEA EAX, 

[RAX + RBX * 8 + 10].

Knowing EAX(RAX) is 5 and EBX(RBX) is 30 

(decimal). So [5 + (30 * 8) + 10]. Simplify again to [5 

+ 240 + 10]. Finally, this simplifies to 255. In hex this 

is 0xff.

Note that RAX/EAX has 0xff as it's value after we run 

that LEA instruction. That's what LEA does in a 

nutshell. Compilers more often use this as a one 

instruction math hack.



  

 

Load InEffective Address

Because of what this instruction does, it only makes sense 

to have a register as the dest operand and a pointer as the 

source operand.

However, the Encoding of the LEA instruction uses the 

MODR/M byte. This means that a register could be 

encoded with both operands (like and MODR/M based 

instruction).

If we try to do this in assembly, we get an error that we 

used an invalid combination of opcode and operands.

That doesn't stop us from directly encoding LEA EAX, EAX 

(8D C0).

However, all of this is fairly pointless as this instruction IS 

indeed invalid and will cause an error if it is executed. But 

in principle, this is a specific error that would be harder to 

achieve in assembly alone (without being able to machine 

hack)



  

 

Prefix
Abuse



  

 

The BSWAP instruction can be used to reverse all of 

the bytes in a register. Notice that there is only an 

encoding for 64-bit and 32-bit registers, but not 16-bit 

registers. Even though 16-bits is enough bits to 

reverse 2 bytes. Why can't we do this?

Challenge accepted!



  

 

This is us in assembly attempting to write an 

instruction that uses bswap on a 16 bit register: 

BSWAP AX

Of course we get an error saying that we used an 

invalid combination of opcode and operands



  

 

In 32-bit x86 (64-bit is similar but not exactly the 

same), there are prefixes that modify the operand 

sizes. For many instructions there is no encoding for 

16-bit instructions, just an encoding for 8-bit and 32-

bit. In order to use a 16-bit encoding, you should use 

a 0x66 or 0x67 prefix before your instruction 

(depending on what part of the instruction you 

wanted to override)

 So we put a 0x66 in front of our BSWAP EAX and 

achieve BSWAP AX.

It should be noted however that this instruction 

doesn't work as intended (in my experience, it just 

clears the register completely)



  

 

REP Prefix

For the following string instructions:

INS, MOVS, OUTS, LODS, STOS, CMPS, 
and SCAS

Ignored on all other instructions

except for repeating a NOP

The REP prefix can be used to repeat an instruction. 

This is really only intended to be used for instructions 

that operate on strings, so it doesn't do anything to 

any other instruction. The REP prefix byte is 0xF3

But there is one interesting exception, the screenshot 

shows these two different assembly instructions and 

how they mean the same thing to the processor.



  

 

Why

This is because for whatever reason, the pause 

instruction is machine encoded as 0xF390.



  

 

Consistent Instruction Sizes

The cool thing about this prefixes, is considering what 

would happen if you prefix a prefixed instruction with 

another of the same prefix. The answer is nothing. There is 

a limit to how many prefixes you an use; the instruction can 

be no larger than 15 bytes (you will get an error otherwise).

 

This screenshot shows some functional shellcode, and a 

couple of examples of the same code padded with prefixes. 

These examples make each instruction take the same 

amount of machine code bytes as every other instruction. I 

can't think of a reason why this would be useful, but it's still 

pretty cool.



  

 

Full Offsets

Here's something interesting, looking at the top 

instruction, the disassembly says that the instruction 

is xor [rax + rax], eax

However, if we actually type that instruction and 

assemble it, we get the same disassembly, but 

different machine code.

What the hell is going on here?

This is just more of nasm's interpretive dance. 

Obviously we don't want the first instruction, this is 

just the 'put a null' in it trick. We obviously want the 

version with less bytes right?



  

 

Full Offsets



  

 

MultiByte NOP

That is unless we don't.

The MultiByte NOP is the argument for not wanting 

our assembler to interpret our assembly into 

something optimized.

The MultiByte NOP allows for many different bytes 

because it takes advantage of how multibyte the 

MODR/M can be. The MODR/M argument doesn't 

actually contribute anything to the instruction in any 

meaningful way, it is just a dummy operand to add to 

the instruction size in a variable way.

So I'm going to take the suggested assembly in the 

intel manual and...



  

 

MultiByte NOP (suggested)

...and I'm gonna put it in an assembly source file and 

assemble it with nasm...



  

 

MultiByte NOP (suggested):
Teh Underwhelm

This is our result...

This for sure got an interpretive dance performed on 

it.



  

 

MultiByte NOP (suggested):
W/O Nulls

I next try to mitigate this by putting some non null 

offsets into the pointers, this prevents the assembler 

from optimizing them out.

Of course we are misadventuring from what Intel 

suggests...



  

 

Better, but Still Sucks

...but as you can see, it works a little bit better. But 

only a little bit.



  

 

What it Should Look Like,
But Had to use Direct 

Machine Code

To get the (exact) machine code advertized in the 

Intel manual, I could find no other way but to 

manually program this in machine code



  

 

This is moar bettar

But why go through any of that trouble!

I'd rather just be ignorant and prefix up a normal 

NOP



  

 

Self Modifying Code

with basic arithmetic

Because similar machine code formats

Ignoring stuff like exploit development, an 

understanding of machine code can also be 

extremely useful for self modifying code. There are 

MANY different strategies/techniques a programmer 

could take to achieve cool self modifying code. We 

will only really explore one PoC example here.

For this example, we can ADD a value to a [pointer] 

that happens to be the memory location of another 

instruction. Instructions with the /n format have the 

instruction itself encoded in the number of /n. For 

example, INC is 0xFE /0 and DEC is 0xFE /1. If we 

just added the right number to the right location of 

the INC instruction, it would be convertible to a DEC 

instruction.



  

 

Self Modifying Code

This slide shows the machine code  and assembly 

tho show the very small differences.

The last image shows the machine code of the first 

image in binary isolating out the 3 bits that control 

which instruction it is.

In red, the 000 means INC and the 001 means DEC. 

The difference to the 2 instruction is just one bit.



  

 

Self Modifying Code Demo

This demo will show a series of 3 instructions that 

are using this trick. When you get to the 3
rd

 

instruction, it isn't the same instruction it looked like 

before the program ran.

These 2 screenshots are more for the benefit of the 

PDF version of these slides. Time permitting, a live 

demo of this will be done during the presentation.



  

 

CactusCon 2017 – Boot and Play

I will be giving a talk at CactusCon 2017 

in September called Boot and Play. It is 

about 512 byte boot sector programs 

that are games and puzzles.

Self modifying code is a nice trick to 

have in the bag because it helps get the 

byte count down. The above trick that I 

mentioned is a trick that I use in 

TronSolitaire (

https://github.com/XlogicX/tronsolitare)

https://github.com/XlogicX/tronsolitare


  

 

Enough of This! Make a
Tool Do It!

IRASM:

Interactive Redundant ASeMbler

This is another 'demo' slide. This is where I 

demonstrate what the demo can do.

Hint: it pretty much does everything with the 

concepts described in this whole talk. It's like 

nasm_shell, but it outputs many other valid variations 

of machine code that represents the same assembly 

input.



  

 

PDF Version only

This slide wont be displayed in the main 

presentation, instead I will demo the tool live, but 

since the PDF version can’t do that, this is a 

screenshot showing irasm side by side with 

nasmshell. The same assembly instructions are 

entered into both, you see the left hand side is more 

verbose.



  

 

Thanks/QA/Links

● m2elf.pl –interactive
● https://github.com/XlogicX/m2elf

● Irasm
● https://github.com/XlogicX/irasm

● My Blog
● xlogicx.net

● Twitter
● @XlogicX

I tend to speak fairly quick and am good at time 

management, so I may have time for questions. It 

really depends on this years DEF CON policy on 

Q/A. Regardless, I will make myself available for 

more in depth Q/A in the hangout room after I deliver 

the talk.

This slide is more just to leave up the links to the 

tools and my contact info / blog

https://github.com/XlogicX/m2elf
https://github.com/XlogicX/irasm
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