ASSEMBLY LANGUAGE IS
TOO HIGH LEVEL

DEF CON 25

XlogicX

SHOUTZ

KRT_c0c4!n3 (art)

Fat Cat Fab Lab (where | hack)
NYC2600 (who I friend)
DC201 (Because DEF CON)

- My girlfriend KRT_c0c4!n3 (art director) did a good
portion of the art of these slides

- | worked on most of my code and all of these slides
from Fat Cat Fab Lab. It's my favorite hackerspace in
the NYC area (West Village)

- NYC2600 is my local 2600 community and where
I've made most of the friends | have in NYC

-DC201, because it's the closest active DEF CON
group in my area

Even as a kid | wanted to do low level
programming. | had no access or
knowledge of compilers or even major
programming languages. | deep down
felt like | should be able to type the right
binary data into a notepad (or
something like it) and run it, but all | had
was just some Windows 3.11 and
ignorance

| eventually did end up typing hex into debug (comes
with Windows 3.11+) and executed my program live
at CactusCon 2016

Deck at http://xlogicx.net/?p=515

| eventually try to teach myself Z80 assembly. This is
because | already had a TI-82 and already tried
some sweet games programmed in assembly.

The first program | made was an example program
that clears the screen. My first attempt to make my
own program cleared the memory. This was
unintended...

| then formally learn Assembly for the M68HC 11
microcontroller in school. | don't even remember if
we had a textbook, but we did have the Motorola
manual. This manual listed all of the instructions with
the machine code next to the instruction.

| had a lot of fun with this architecture. Inspired by
Godel Escher Bach, | attempted to create a program
that replicated itself into the next area of memory and
executed itself. | learned the importance of needing
to understand the abstraction layer of machine code
in order to pull this off. Also, the assembly language
and machine code for this architecture was relatively
one to one.

PROPELLER ASSEMBLY

use of Propeller Assembly (instead of the
recommended high level language: SPIN). This
architecture was pure beauty, and the relationship
between the machine-code and assembly language
was practically one to one for all intents and
purposes. I'm still waiting on Chip Gracey to finish
Duke Nukem Forever (... mean the Propeller Il)

X86 ASSEMBLY

int D intel® 64 and IA-32 Architectures Software Developer's Manual @
Q — ¥

VOLUME 1: Basic Architecture

- intel® 64 and IA-32 Architect

ures Software Developer's Manual ¢ @
VOLUME 28 iInstruction Set Reference. A-M

intel® 64 and 1A-32 Architectures Software Developer's Manual
VOLUME 28 msaructen Set Sederence % 7

—-—]
intel® 64 and 1A-32 Architecture ftware Developer's Manual

VOLUME A System Py umeming Lude ot |

intel* 64 and IA-32 Aciiwtecture

L’ VOLUME 38 System Progyammng Code Pt 7

@ intel* 64 and IA-32 Architectures Optimization Reference Manual

Then, a matter of years ago, the company | was
working with before voluntold me to take GREM
training (GIAC Reverse Engineering Malware). This
is the context in which | eventually learned the x86
architecture for assembly language. | learned that
the language was the most terrible assembly
language I've ever seen up to this point; which made
it all that more beautiful.

And those manuals in the screenshot, I've read them
all, cover to cover.

INTRODUCING:
INFOSEC BRO

| - -

Assembly refers to the use of
instruction mnemonics that
have a direct 1 to 1 mapping
w/ the processor’s instruction
set...

* "Assembly refers to the use of instruction
mnemonics that have a direct one-to-one mapping
with the processors instruction set"

\ | / i

However, everything in the end

is assembly, and that is just | 7
Y fixed sequences of 1's and Vi%
O’'s being sent to the
processor...)

* "However, everything in the end is assembly, and
that is just fixed sequences of ones and zeros
being sent to the processor"

‘ — —

...that is to say, there are
E no more layers of ﬂ
abstraction between your
code and the processor

« "...thatis to say, there are no more layers of
abstraction between your code and the processor"

I0Active

Reverse Engineering Code with

IDA Pro

Uncover the Good, the Bad, and the Ugly Code with IDA Prol

« Master the Most Powerful Disassembler and Debugger for Windows
Uirnux, or OS X

This book had alt'of the above 'quotes This'book'is
also apparently. all. areund.terrible in.many.other,u
ways. But dan't just take my word for it...(next slide)

BEST REUIEW EVER

Author o book
By J. Ferguson on July 10, 2008

Fomat Paerback

Thi s my second atiemp at reviewing the book | helped write, Amazon continues o censor me probabl because my encouragement s ot fo
S 0y tis ook afer dealing with syngress, | wouldn' advise buying anything thatcomes from fhem). | dont know how to say tis ot tan

apologze o everyone who putchased tis book it really was supposed o be much more. However th corporate world being what it i, it was

rushed from deading to deading without any regard for qualt, the edtors actually nfroduced errors, many of e diagrams are unreadable and

theres pars of the book justfat out missing, DO NOT BUY.

This review was from one of the authors of this book!

KITTEH DEMO

edb - /root/kitteh [1491] [- O <]
File View Debug Plugins Options Help

(-) (n) 1. No Analysis Found For This Region

v ecx, ezp Registers & ®
General Furpoze

rd ptr [ebptds], 0x7874
EAX: 0000004e

j= 0x080480f1
add byte ptr lesil, ch
jnb 0:0804815d
jnb 0:0804816h
jb 0:0804816d
popad
bound eax, quord ptr [eax]
jz 0108048164
j= 0:0804m175 <s: 0073
add byte ptr lesil, ch o07h
" s: 0o7h
0000 (00000000)
iz oxosossice GS: 0000 (00000000
ss: 007h

root.
AGS: 00000286
Segments

esp = bf920ddo
ecx = bf920dbc

sT0: 0

® Stack

Running the demo kitteh program to show what it
does

Quickly running through the source to show the
vulnerabilities

Exploiting the program to get a 'shell’

Showing the important line of assembly being
exploited, and how the actual machine code cannot
be produced by nasm_shell

The screenshot in this slide is for the PDF version, it
is only a hint at what will be demonstrated

TOOLS USED IN TALK

* m2elf.pl — Converts machine code to ELF
executable
* Irasm — Like nasmshell.rb (but does the stuff
2 that this talk explains
* It's also not a shell, it's an assembler written in
Ruby

| will likely be flying in and out of these tools during
this talk. Not as legitimate full demos, just a few
seconds here and there to illustrate the points.

MZ2elf is a tool that | created that takes hex or binary
(1's and 0's) in an input file and converts it into a fully
ELF executable. For the purposes of this
presentation, | will be running it in 'interactive' mode;
it takes machine code input and immediately displays
the instruction it represents (instruction by
instruction)

Irasm is like nasmshell.rb, only irasm is not a shell,
it's an assembler. Instead of just displaying official
machine code, it outputs a bunch of redundant
machine code as well (as discussed in this talk)

= ASSEMBLY <~ MACHINE CODE —

- KDAL inn8 Ve VA Ao

« ADD AL, imm8
* Adding an 8-bit value to the 8-bit AL
register
“+0x04 is opcode for 'ADD AL' followed by
byte to add

@0600:0060(04 42 | add al, 66 a| Registers
0800: 6062 98
9860: 0063 98 -

6800: 0064 90 EAX: 00900042 =

Let's talk about what people are thinking
about when they erroneously say that
assembly language and machine code have
a one to one relationship.

We can say that if we add the byte of 0x42
to the AL register (ADD AL,0x42). The
machine code will be 0x0442 (0x04 for ADD
and 0x42 is the byte).

This means that if we wanted to add 0x33 to
the AL register, the machine code would be
0x0433

You see the correlation right?

- ASSEMBLY <~ MACHINE CODE =

_‘ Wit 1 NCr32 0 NE Vald Irement coubeword regster by 1,

*INC, 32-bit Register
* Increments a 32 bit register

* These registers come in the following
2 order:
* EAX, ECX EDX, EBX, ESP, EBP ESI, EDI

This one is a little more complicated
but not that bad. All of this increment
(INC) instructions start with a Ox4
nibble, and the next nibble
corresponds to the register you want
to increment. Since EAX is first, INC
EAX is just 0x40.

This is unless we are using a 64 bit
processor, then the 0x40 is a prefix
byte, different story all together
though.

ASSEMBLY <~ MACHINE CODE
B0+ b b MOV 16, imm6 OF Vaid ~ Vald Move imm6tor
(6/00b MOV r/m8, imm@ M Vaid Vaid MoveimmBto rim8

= * MOV r8, iImm8
* Move a byte into an 8-bit register

,* These registers come in the following order s
AL, CL, DL, BL, AH, CH, DH, BH

0600:0060 b0 42| nov al, 66 | Registers 0800:0660c6 0 42| mov al, 66 a| Registers
0800:0062 b1 42 | mov cl, 66 0860:0063 |c6 c1 42| mov cl, 66
0800:0064 b2 42 | mov dl, 66 v 800:6066 |6 2 42| mov d, 66 v
0800:0066 b3 42| mov bl, 66 EAX: 00004242 | 0800:0069|c6 c3 42| mov bl, 66 EAX: 6064242
0860:0068 b4 42 | mov ah, 66 EBX: 00004242 | 0800:006c|c6 c4 42 | mov ah, 66 EBX: 00004242
0800:006a (b5 42 | mov ch, 66 ECX: 00004242 | 0860:606f |6 c5 42 | mov ch, 66 ECX: 00604242
6800:006c|b6 42 | mov dh, 66 EOX: 60004247 | 0800:0672)c6 c6 42| mov dh, 66 EDX: 00664242 B

ol | 0800:006 b7 42| mov bh, 66 £8P: ooggggg | 96000075 c6 <7 42| mov bh, 66 EBP: 08900000 e
o) 0800:6670 |9 ESp: bibebafg [PPC00:0078 ESP: 973950

Similar to the last two instructions. This is a group of
MOV instructions where 0xB is the first nibble
representing MOV, and the next nibble represents
the register. Finally, the byte that follows is the byte
to be moved to said register.

But wait, there's a 0xC6 format that allows us to add
a byte to a more complex data structure that includes
memory pointers AND also registers (and because
this structure supports registers, we find a
redundancy here)

Knowing all of this, if you did: mov al, 0x44
Your assembler (and nasmshell) would output:
0xB042

It wouldn't output 0xC6C042

But the irasm tool will

AAD [ASCIl ADJUST AX
BEFORE DIVISION])

*The assembly for this is too high
level

* The machine code is also too high
level

* Even the mathematical concept is
too high level!

*Or, how to do basel and baseO math

i *Supposed to do BaselO conversion

| love the AAD instruction. It says it does a thing. But
the thing it actually does to do the thing it says it
does is far more interesting. The next several slides
go into depth of these things.

AAD — WHAT IT DOES

This instruction takes the value of AX (two bytes).

It breaks them out and considers them to be two
decimal numbers (base10).

Regardless of the misleading '+' symbol in the slide,
it combines the two digits as if the zeros weren't
there.

The result is considered a base10 value. It's
hexadecimal representation is stored back into AX.
This really means that it is stored into AL and AH
gets wiped. Because even the largest decimal value
of 99 would still fit into AL as hexadecimal.

This style of slides are animated; they will look a little
weird in the PDF version.

AAD — ASSUMPTIONS
=0709

* The entire value is 16 bits

s * The two halves make up 8 bits (07 and 09) g
* Being that the values are converting from
base 1
* The two halves need to be from 00-09
* Even though OA-FF are valid 8 bit values

To think like a hacker for a second, think of the
context of what goes wrong when you don't do input
validation and the things that could go wrong.

In AX, you're supposed to have a decimal (0-9) value
in AH and AL. However, each of these registers could
actually be in the range of 0x00-OxFF

AAD — DEBUGGED

BRI @ 0304:8060 |66 b8 09 07| mov ax, 0x0709 |E
B (0304:8064 |d5 0a aad 10

* 0709 moved into the 16 bit register (ax)
* AAD performed
* The ‘A’ (al/ah/ax/eax) register now contains

.. 004f
* The AAD mnemonic is interpreted by all
assemblers to mean adjust ASCII (base
10) values. To adjust values in another
number base, the instruction must be hand
! coded in machine code (D5 imm8)

The interesting thing here is that the real machine
code for the opcode of AAD is just OxD35, the next
byte is actually not part of the opcode; it's an
operand. It just defaults to Ox0A (or 10 in decimal). In
assembly, you can only type 'aad’; you can't give it
the base you want to use because base10 is
assumed.

However, if you write this instruction in directly in
machine code though, you can actually choose a
different base and the high level mathematical
concept works out.

Assembly, it's too high level

AAD — BASE B

—
!

§00804:3060 (66 b8 05 03] mov ax, 0x0305 [
e 0804:8064|d5 06 aad 6 ~EAX: 00000017

This is us working through an example of choosing
our own arbitrary base of 6.

Our character set for baseb6 is from 0-5.
Cramming 3 and 5 together gives us 35.

This instruction needs to convert 35 (baseb6) to a
hexadecimal (base16) value.

35in base10is actually 23 =((3*6)+ (5™ 1))
23 in hexadecimal is 0x17

It's amazing, it all works out!

AAD — BASE 2

: 4 00304:8060(66 b8 01 01| mov ax, 0x0161
S 0004:8064|d5 02 aad 2

Let's do base?

We cram 1 and 1 together and get 11

11 in binary is 3 in decimal which is 0x03 in
hexadecimal

So this works too.

LET'S HACK: INUALID INPUT

 Remember base 10, we were limited to 00-09?
* What happens when we use the values in the OA-FF
range?
* Do you know what base 1 or even base 0 means?
* Neither do I, so what happens?

This is an introduction slide for us to try some real
ignorant things and to attempt to make some
meaning out of it

- AAD — BASE 1@, INPUT BEYOND RANGE ===

S 90804:5060(66 b8 67 05 nov ax, Oxe56f ¥ O
B 1304:8064|d5 0a aad 10 o MR

This is us going far above base10 values in AX
(AH/AL), but then specifying base10 for the aad
instruction.

It's hard to visualize cramming 5 and 6F together, but
the slide does it's best to make something of it.

By the process of magic (whatever AAD is actually
doing), we get the result of 0xA1.

OxA1 is then stored back into AX

=-AAD — BASE 1, | GUESS THAT'S A THING...-=

What about base 1?
Well, our only valid character is zero, so:

Cram 0 with 0 to get 0 to convert to 0 and store O
back into our register that already had 0.

Pointless, but at least it makes sense and we know
whats going on here | guess.

=-AAD — BASE @, THAT CAN'T BE A THING-===

Then there's base0. There is really no valid character
for this, so | just made AX OxBEEF.

We cram it together, and by the magical process of
AAD we get a result of OXEF and store it back into
AX.

Ls = g

MACHINE CODE:

TOO HIGH LEUVEL ,
* What's actually happening under the Hood?
* Microcode
* Intel's PseudoCode for AAD:

IF 64-Bit Mode
THEN

#UD;

ELSE
tempAL « AL,
tempAH « AH;
AL « (tempAL + (tempAH * imm8)) AND FFH;
(* imm8is set to OAH for the AAD mnemonic.*)
AH <0

This screenshot from the Intel manual shows what is
actually happening under the hood.

It's not literally a base conversion, just some
mathematical operations (an 'algorithm') that happen
to perform the conversion when you don't feed it
garbage.

This is fucking profound. Mathematics is not reality,
it's just a model for it sometimes. Don't take math too
seriously, math is stupid.

. A MORE SIMPLE FORMULA

* AL=AL + (AH * base)

* Where:
* AL is the last 2 bytes of input
* AH is the first 2 bytes of input

* Base defaults to 10 (but we can machine
hack that)

This is a better representation of what the Intel
pseudo-code is doing. It's actually pretty elegant

looking. It's also pretty cool that something so simple
can 'convert' 'bases’ so easily

A NEW UNDERSTANDING

* AL=AL + (AH * base)
* 0709 (basel0): 09 + (07 * 10) = 4F (79 decimal)
* 0305 (baseb): 05 + (03 * 6) = 17 (23 decimal)
* 0101 (base2): 01 + (01 * 2) = 3 (3 decimal)
* 056F (basel0): 6F + (05 * 10) = A1 (161 decimal)

*+ 0000 (basel): 00 + (00 * 1) = 0 (0 decimal)
* BEEF (base0): EF + (BE * 0) = EF (239 decimal)

For fun, we use this simple formula to crunch through
all of the examples in the previous slides to see that
the formula does crunch out the answers that we

expect them to.

HOW IS THIS USEFUL

*\We have a new certain way to clear AH
e Old way number 1: mov ah, 0
« Efficient Compiler way: xor ah, ah
e Our new stupid way: db 0xd5, 0x00
* Or AAD base 0

All kidding aside about clearing the AH
register, it's cool to know that we can do
conversions in obscure bases with one
instruction. It's even cooler that the way
to implement it is even more obscure:
you have to do it in machine code

...because assembly is too high level

MODR/M + SIB

* Allows you to do various encodings with registers--
and memory
* Memory encodings is where it gets interesting
(complicated)
_* Already complicated enough, even without the
" redunds

This can be some rough terrain right here. Not
having to manually do this encoding should make
people appreciate assembly language as a super
high level language that makes things easier for the
programmer. We will be treading this terrain in the
next 30ish something slides!

This encoding is used to allow the programmer to
use registers and memory pointers as operands

- MEMORY POINTER FORMAT =

* Things you can use in a pointer:
* Register (base register)
* Register multiplied by 1, 2, 4, and 8 (scaled)
* A 8bit or 32 bit offset (displacement)

— *All of these are optional
* Examples:
* [eax + ebx * 2]
* [ebx + 0x33]
*[ecx * 8 + 0x11223344]
* [0x33]

In a memory pointer, you can have a base register, a
scaled register, and a displacement. They are all
optional, but you at least need to use one of them
(otherwise it would be nothing at all)

Of the registers, you have the 8 general purpose
ones to choose from (with some major exceptions)

If eax is 0x11223344, XOR [eax], eax will XOR the
value of eax with the value in the address of
0x11223344 and store it at that address

You can also add to the address of that pointer with a
displacement. [eax + 0x42] would be [0x11223386]
(considering what eax originally had above)

MODR/M TABLE

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

r8(/r)
r16(/r;

r32(/r,

mm(/r,

xmm(/r)

(In decimal) /digit (Opcode)
(In binary) REG =

Effective Address Value of M

-
@ TMON@W>»OO

EAX]+disp83
ECX]+disp8

d | [EDX]+disp8
EBX]+disp8
—[--]+disp8
EBPJ+disp8
ESI}+disp8
EDI}+disp8

EAX]+disp32
ECX]+disp32
EDX]+disp32
EBX]+disp32
--][--]+disp32
€BPj+disp32
€SI}+disp32

€DI}+disp32

EAX/AX/AL/MMO/XMMO
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MMS5/XMM5
M | ESI/SI/DH/MM6/XMM6
EDI/DI/BH/MM7/XMM7

L0 10, T e parpur gy

1
1
1
1
1
1
1
S
5
5

-
WN=0 | NOunh_wN=0O

BH L L0000 | m=—=—O
—OS0=0=0 | =0=0=

This is the machine encoding table that makes it all
happen (well half of it, the other half is the SIB byte
when required).

The MODR/M Table allows for encoding operands as
a register, a pointer with one base register, a pointer
with a base register and a 8 or 32 bit displacement,
or just a 32 bit displacement.

If you want to have a scaled register or mix and
match the above with a scaled register, then you
need the SIB byte (selectable from this table)

As always, there are many exceptions

XOR EAX, EDX [@X31DA]

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

xmm(/r)

(In decimal) /digit (Opcode)

(In binary) REG =
Effective Address

EAX]+disp83

8| [ECX]+disp8
EDX]+disp8

EBX]]mispe

,_][_.
EBPJ+disp8
ESI}+disp8
EDI}+disp8

EAX]+disp32
ECX]J+disp32
EDX]+disp32
€BX]+disp32
--][--]+disp32
EBPJ+disp32
E€SIJ+disp32

EDI]+disp32

EAX/AX/AL/MMO/XMMO
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MM5/XMM5
ESI/SI/DH/MMB/XMM6
EDI/DI/BH/MM7/XMM7

|+disp8

In this slide we work through an example, because
we like to explore more than just theory.

In most of our examples, we will use the 0x31
machine opcode for XOR (there are exceptions
when we cover redundancies). It's the XOR r/m32,

r32 encoding (so first operand can be register or
pointer and second operand has to be a register,

both 32 bit)

In the table, we line up EAX with EDX to get our
0xDO0 value for the operand information for our
machine code.

XOR [ECX], EAX [(@X31a1]

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

r32(/r,

mm(/r,

xmm(/r)

(In decimal) /digit (Opcode)
(In binary) REG =

Effective Address Value of M

;?ggvr;

EAX]+disp83
ECX]+disp8
EDX]+disp8
EBX]+disp8
--][--]+disp8
EBP]+disp8
ESI}+disp8
EDI}+disp8

EAX]]+disp32
ECX]+disp32
EDX]+disp32
EBX]+disp32
—[--]+disp32
€BPJ+disp32
ESI}+disp32

€DI]+disp32

EAX/AX/AL/MMO/XMMO
CX/CX/CL/MM/.

1
1
1
1
1
1
1
1
5
5
5

N=0 | NOUVnAWN=O

BE L L0000 | H=a—0000 | mm——O
La00==200 | ==200-2200|==00=
—“O0—=0=0=-0 —=0=0=0=0|—=0=0-=

EDI/DI/BH/MM7/XMM7

Next we do a pointer for the first operand. Note we
are still starting with the 0x31 encoding for XOR

We are using the pointer of [ECX] for the first
operand and EAX for the second operand. All we
have to do is line them up to arrive at the 0x01 byte
for the machine code byte to encode this. It's just as
straight forward as the last example

XOR [ESI + BX42], EAX (BX314642)

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

xmm(/r)

(In decimal) /digit (Opcode)

(In binary) REG =
Effective Address Value of M

10
11
12
13
14
15
16
17
50

2

EAX]]+disp83
ECX]+disp8
EDX]+disp8
EBX]+disp8
-][--]+disp8
| [EBP]+disp8
ESI}+disp8
EDI}+disp8

EAX]+disp32
ECX]+disp32
EDX]+disp32
EBX]]+disp32
--][--]+disp32
EBPJ+disp32
ESI}+disp32

EDIJ+disp32

EAX/AX/AL/MMO/XMMO

| ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MMS5/XMM5
ESI/SI/DH/MMGE/XMM6
EDI/DI/BH/MM7/XMM7

P LL 0000 | m—a
LML 00=200 | ==0
—0=0—=0=0|=0=

This one adds one little extra bit of complexity.

We first start with our 0x31 for XOR. Next we have a
pointer of [ESI + 0x42] and then EAX.

EAX is easy to line up at the top. For the first
operand, we need to find a line that supports ESI
plus a 1 byte displacement. It is shown in the
screenshot as 0x46

But we aren't done, the processor then expects the
next byte of the instruction to actually be that offset,
so the 0x42 displacement comes as the next byte

XOR [EBX + BXFFF31337], ESP [(BX31A33713F3FF)

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

(/)
(In decimal) /digit (Opcode)
(In binary) REG =

Effective Address Value of M

-
o
@

| MMONO> WL

EAX]+disp83

ECX]+disp8
M| [EDX]+disp8
EBX]+disp8
--](--]+disp8
EBPJ+disp8
sl | [ESI]+disp8

EDI]+disp8

N|momaaaa
N=0 | NOunh_hwN =
(0,10, 10, 1 [Y g g

EAX]+disp32
ECX]+disp32
EDX]+disp32
€BX]+disp32
—][--]+disp32
€BP]+disp32
ESI}+disp32

EDI}+disp32

EAX/AX/AL/MMO/XMMO
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
| ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MMS5/XMM5
ESI/SI/DH/MMBE/XMM6
EDI/DI/BH/MM7/XMM7

If the previous example made sense, this one should
be just as easy.

We need to find a pointer that supports EBX plus a
32 bit displacement and the register of ESP. When
lining this up on the table, we find that it is 0xA4.

The only thing that may appear confusing to those
that don't know is that Intel encodes addresses in

Little-Endian form. This is just another way to say

that bytes are in backward order. So OxFFF31337
becomes 0x3713F3FF after our machine code of

Ox31A3.

This makes the entire instruction: 0x31A33713F3FF

XOR [@X42], EAX (BX310542000000)

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

|| r8(/r)
r16(/r,
r32(/r,
mm(/r
xmm(/r)
(In decimal) /digit (Opcode)
(In binary) REG = 011
Effective Address] alue of ModR/M Byte (in Hexadecimal

N moaaaaaa
N=0O | NOuh_wWN-=O

(0,10, 10, 1 [Y P
OO | MTMON@POO

EAX]+disp83
ECX]+disp8
| [EDX]+disp8
€BX]+disp8
--][--]+disp8
EBPJ+disp8
w| [ESI]+disp8
€EDI]+disp8

EAX]+disp32
ECX]+disp32
€DX]+disp32

€DI]+disp32

EAX/AX/AL/MMO/XMMO
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
==| EBX/BX/BL/MM3/XMM3
| ESP/SP/AH/MM4/XMM4
S| €BP/BP/CH/MM5/XMM5
ESI/SI/DH/MME/XMM6
EDI/DI/BH/MM7/XMM7

This is looking at not using any registers for our
pointer. This examples just demonstrates a literal
displacement of 0x42.

We need to find the horizontal line that encodes for
only a displacement and the vertical line for EAX.
There are no horizontal lines for just an 8 bit
displacement, so we are forced to use the 32 bit one
and just pad the first 3 bytes with nulls.

So we have our 0x31 for XOR, 0x05 for the operand
encoding from the chart, and 0x42000000 for the
displacement data (ordered like that because Little-
Endian)

XOR [EBX + ECX * 4 + @X42], EAX (@X31448B42]

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

(/)
(In decimal) /digit (Opcode) 0 1 2 3
(In binary) REG = 011

Effective Address Value of ModR/M Byte (in Hexadecimal

@

EAX]+disp83
ECX]+disp8
EDX]+disp8
EBX]+disp8
—[--]+disp8
EBP]+disp8
| [ESI]+disp8
€DI]+disp8

EAX]+disp32
ECX]+disp32
EDX]+disp32
€BX]+disp32
—][--]+disp32
EBP]+disp32
ESI}+disp32

€DI]+disp32

EAX/AX/AL/MMO/XMMO

ECX/CX/CL/MM/XMM1

EDX/DX/DL/MM2/XMM2
3/XMM3

-
N=0O | NOUuAWN=O
@MPOO | MTMONTB>O

NN | R maaaa
-
(U210, 10,10, 1 Y N

= | EBX/BX/BL/MM
| ESP/SP/AH/MM4/XMM4
#™| €BP/BP/CH/MM5/XMM5
ESI/SI/DH/MME/XMM6
EDI/DI/BH/MM7/XMM7

Now we start to get a little crazier; we are going to
use a scaled register.

Lining up the second operand of EAX on the chart is
easy. To use a scaled register, we need the SIB byte,
which is one of the horizontal options using [--][--].

There are 3 different variations of this SIB option,
one without a displacement, one with an 8 bit
displacement, and another with a 32 bit
displacement. In this case, it's just the 8 bit
displacement. So we choose 0x44 in this table, and
then look next to our SIB table to pick the actual
Base and Scaled register

XOR [EBX + ECX * 4 + @X42], EAX [(@X31448B42]

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
| 32 €DX EBX €SP "
(In decimal) Base = 0 2 = 4 S5

(In binary) Base = 010 011 100 101

Scaled Index Value of SIB Byte (in Hexadecimal)

The Base register will be the vertical line and the
Scaled (multiplied register) will be the horizontal line.

Finding EBX (vertical base register) is the easiest.
For the horizontal line, we must find the item that
uses ECX and is also * 4. This is actually not terribly
hard to find on the table either.

When you line this up, you get 0x8B for the SIB byte.

Finally, we have the displacement of 0x42 to add to
the end of the instruction to get our final result

XOR [ESP], EAX [(BX310424)

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

xmm(/r)

(In decimal) /digit (Opcode)

(In binary) REG =
Effective Address

EAX]+disp83
ECX]+disp8
- EDX]+disp8
EBX]+disp8
—[--]+disp8
EBP]+disp8
| [ESI}+disp8
€DI]+disp8

EAX]+disp32
ECX]+disp32
EDX]+disp32
€BX]+disp32
—][--]+disp32
EBP]+disp32
ESI}+disp32

€DI]+disp32

EAX/AX/AL/MMO/XMMO
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2

EDI/DI/BH/MM7/XMM7

Now lets dig into some weird exceptions; lets start
with using ESP as the base register in a pointer.
When looking at the table, ESP isn't an option?

However, we know from the SIB byte that you can
choose a Base register, although you have to choose
a Scaled register as well. But did you notice from the
table on the last slide that 'none' was an option for
the Scaled register. That's the hack that assemblers
use.

For the MODR/M byte, we line up EAX for the
vertical and the [--][--] (SIB) for no displacement. This
gives us 0x04 for our MODR/M byte.

Next let's look at what we do with the SIB byte.

XOR [ESP], EAX [@X310424]

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32 EDX EBX ESP |
In decimal) Base = 0 1 2 3 4 5
In binary) Base = 010 011 100 101

Scaled Index Value of SIB Byte (in Hexadecimal)

Since ESP is our Base register, we line that up
vertically. We choose the first 'none' horizontal line
for the Scaled register to give us 0x24.

So what's the difference between that 'none' and the
3 others. There isn't any in this particular case,
hence the next slide

- XOR [ESP], EAX [@X310424),
WITH ALL THE 'NONES'

600:6060 |31 04 24 | vor dhord ptr
| ord ptr

for dword pt
Yor dword ptr
Yor dword pt

Wora prr

In this slide we see the PoC of using all 4 of the
'none’ options in the SIB byte. This is to note that the
assembly is the same for any of these

USING SIB WHEN YOU DON'T NEED TO

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32 EDX EBX ESP ™
3 4 S

(In decimal) Base = 0 2
(In binary) Base = 010 011 100 101

Scaled Index

Value of SIB Byte (in Hexadecimal)

EAX*2]
ECX*2]
£DX*2]
€BX*2)
none
[EBP*2]
[ESI*2]
[EDI*2]

EAX*4]

In the last example, we needed to use the 'none'’ field
in the SIB byte because ESP wasn't an option for the
base register. However, we can still use this
ignorance when the base register is already an
option in the MODR/M table.

In this slide, we are showing that we are using this
encoding with EAX. Keep in mind that we can still
use any of the 4 'none' bytes

GRATUITOUS SIB

In this screenshot we first see how an assembler
'should' encode XOR [EAX], EAX. The last 4
instructions are the various ways we can encode it
with the pointless 'none's in the SIB byte

= XOR [ESP * 2], EAX [@BXNOPE)] =

Scaled Index

What's the exception to use ESP as a Scaled
register? as we didn't notice it as an option in the SIB
byte encodings. It's because you can't. You try to
write this above instruction and your assembler will
give you an error and make you feel bad.

Table 2-2.

xmm(/r)

(In decimal) /digit (Opcode)

(In binary) REG =
Effective Address Value of M

10
11

12
13
14
15
16
17
50

EAX]+disp83
ECX]+disp8
EDX]+disp8
EBX]+disp8
--][--]+disp8
EBP]+disp8
ESI]+disp8
EDI}+disp8

EAX]+disp32
ECX?—dispSZ

EDX]+disp32
EBX]+disp32
--][--]+disp32
EBPJ+disp32
ESI}+disp32
EDI]+disp32

EAX/AX/AL/MMO/XMMO
ECX/CX/CL/MM/XMM1
EDX/DX/DL/MM2/XMM2
EBX/BX/BL/MM3/XMM3
ESP/SP/AH/MM4/XMM4
EBP/BP/CH/MMS5/XMM5
ESI/SI/DH/MMGE/XMM6
EDI/DI/BH/MM7/XMM7

This instruction has a base register of
EBP and a scaled register of EAX * 2.
Vertically aligning the 2" operand of
EAX is easy. Since we are using a
scaled register, we need to find the
appropriate [--][--] line horizontally.

One would think that we would pick
0x04, but that is not the case, we need
to pick 0x44 due to some EBP base
register complications in the SIB byte
that we are about to explore on the next
slide

XOR [EBP + EAX * 2], EAX (BX31444520)

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
Bl r32 EAX ECX EDX EBX ESP ™ €SI EDI
(In decimal) Base = 0 1 2 3 4 5 6 7
(In binary) Base = 000 001 010 011 100 101 110 111
Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

- [EAX] 0o 000 00 01 02 03 04 05 06 07 ~
[ECX] 001 08 03 OA 0B oc oD OE OF
[EDX] 010 10 11 12 13 14 15 16 17
[EBX] 011 18 19 1A 1B 1C 1D 1E 1F
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 2C 2D 2E 2F
[ESI] 110 30 31 32 33 34 35 36 37
[EDI] 111 38 39 3A 3B 3C 3D 3€E 3F
[EAX*2] 01 000 40 41 42 43 44 45 46 47
ery*21 | nn1 A9 AQ Al lar aAr AN AE | ae

NOTES:
I 1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or disp32 + [EBP]. This provides the I
following address modes:

MOD bits Effective Address

00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

Lining up the horizontal line for the scaled register of EAX * 2 is
straight forward. However, we don't find an obvious EBP base
register on the vertical line. It's the [*] line that actually gives us
what we need.

The [*] line is dependent on the displacement option we pick from
the MODR/M byte. There are only 3 variations; no displacement,
8-bit displacement, and 32-bit displacement. The results are as
follows:

No displacement = [ScaledReg * n + 0x11223344]

Disp8 = [EBP + ScaledReg * n +0x11]

Disp32 = [EBP + ScaledReg * n +0x11223344]

Either of the last 2 options would technically work, but we chose
the 8-bit displacement option because it would get encoded in with
3 less bytes.

So finally, we arrive at the 0x45 byte in our table. However, we
aren't done until we actually put the 0x00 byte at the end, because
this is our 'invisible' displacement This means that our assembly
would more literally be interpreted as such: XOR [EBP + EAX * 2 +
0x00], EAX

IMPLIED SCALE [* 1]

: » Consider [eax + ecxX]
== * You can't have two base registers; one has to

be scaled
~+ Assemblers viewed a 2™ 'base' register as
— scaled by '1'. So:
e [eax + ecx * 1]

There are things we take for granted when only
writing in a high level language like assembly. If you
type a pointer like [eax + ecx], the thing to consider is
that there can only be one base register.

An assembler (like nasm) is going to look to your 2"
register to encode as the scaled register; the
assembler will treat [eax + ecx] more literally as [eax
+ ecx * 1]. Or it will make ecx the scaled register and
scale it by 1.

CONUERT SCALED TO BASE

: » Consider [ecx * 1]
—= * Encoding for SIB requires more bytes
= « If there is no base register already:

~ * Assemblers will convert a scaled by '1' register
as a base. So:
* [ecx]

It's one thing to have something like [ecx * 4]. It is
unambiguous: there is no base register and we need
a scaled register of ecx * 4.

[ecx * 1] on the other hand, assemblers don't do
what you asked for here. If you don't pick a base
register, and your scaled register is scaled by one,
your assembler is just going to make it the base
register.

My instinct is to get annoyed with this, as my
assembly is being interpreted into machine code that
| didn't intend for, as | would have and could have
written [ecx] if that's what | wanted. The reason an
assembler is going to choose this because it takes
less bytes to encode (because it doesn't need the
SIB byte).

ESP * 1]

* You CAN'T scale ESP

* You write [eax + esp *4], you get an error
* You write [eax + esp * 1] or [eax + esp]
* You Dont?

* This is because the assembler converts it for
you behind your back to:
e [esp + eax * 1]

So we know that we can't use ESP as the scaled
register. This is why if we write something like [eax +
esp * 4] we will get an error. But why do we not get
an error if we write [eax + esp * 1]7?

Well, if you were to assemble this and then
disassemble it, you would discover that your
assembler actually writes this as [esp + eax * 1].

In other words, if esp is scaled by only one, and the
base register itself is not also esp, it will make the
base register the scaled one so esp can join back in
as the base. It logically does the same thing.

IGNORES Y0OU, CHOOSES LESS BYTES
SOMETIMES

* This is about the commutative property, it works
with 6 of the 8 general purpose registers, like
this:

0804:8060 |80 34 6b 60 xor byte ptr [ebx+ecx], ©
0804:8064 |80 34 19 66 xor byte ptr [ecx+ebx], ©

xor byte ptr [ebp+eax], ©
l~5‘ 80 34 28 00 Xor th“ tr [eax+ebp], ©

. And doesn't work with ESP, because ESP
doesn't scale

Speaking of swapping around the registers, this is the
commutative property in mathematics (because addition).
We can do this no problem with eax, ecx, edx, ebx, esi,
and ed..

esp is a register that can't be swapped, because of its
scaling issues as previously discussed.

We also discussed the trade-off that needs to be made
when using ebp in the SIB byte, so we do this at the cost of
having to add the extra disp8 null.

However, the most interesting part of this is that if you use
[ebp+eax] in your assembly, it will take you literally If it did
[eax + ebp] (logically the same), it would actually take 1
less byte to encode, but it doesn't opt for less machine
code in this case. Just goes to show that sometimes an
assembler optimizes for this kind of stuff, but not always

PUT A NULL IN IT

* If a pointer doesn't have a displacement, then
put in a displacement of 0x00...same difference

right
0B860:0060 31 04 18 xor dword ptr [eax+ebx], eax
0B860:0063 31 44 18 60 xor dword ptr [eax+ebx], eax

« If there's an 8 bit displacement, make it a 32 bit
displacement with 3 bytes of leading nulls
0800:0067 31 44 18 42 xor dword ptr [eax+ebx+66], eax
0860:006b 31 84 18 42 00 00 60 | xor dword ptr [eax+ebx+66], eax

For instructions that don't already have
displacements, there's nothing from stopping us from
being a troll and adding a displacement of nothing
(0x00). We can add an 8-bit or a 32-bit displacement
with nothing in it and the memory pointer would be
logically the same.

Additionally, if we have an 8-bit displacement, we
can 'upgrade’ it to 32-bit by padding 3 null bytes in
front of it.

PUT A NULL IN IT W/ THE
COMMUTATIVE PROPERTY TOO

» Add a null to it and swap registers

0860:006b |31 04 18 xor dword ptr [eax+ebx],
0800:006e 31 04 03 xor dword ptr [ebx+eax],
0800:0071 |31 44 03 60 xor dword ptr [ebx+eax],

~* Add 3 nulls to it and swap registers

0B800:0075 31 44 18 42 xor dword ptr [eax+ebx+66],
0860:0079 31 44 03 42 xor dword ptr [ebx+eax+66],
0860:007d |31 84 63 42 60 00 60 xor dword ptr [ebx+eax+66],

Of course you can get creative and mix and match
these redundancies.

This slide shows us mixing the 'null upgrade' with the
commutative property

BASIC MODR/M REDUNDANCY

(P32, tn32 R Veld Vold Compare rmd2th 2.
(P32 MR Vald Vel Compae 2t g2

3 cO | cnp eax, eax
39¢0 | cmp eax, eax

This redundancy works because x86 generally has no
instructions that allow for both operands to be a memory
location in the same instruction.

For instance, if your instruction was 'mov', you could move
a value of a register into a memory location, you could also
move the value in a memory location into a register, but
you could never move the value of a memory location into
another memory location (with only one instruction).

Because of this, you need an encoding for each scenario.
However, the operand that allows for a memory pointer
also allows for it to just be a register as well (allowing
register to register).

This means that both encodings allow for register to
register. This is where the redundancy comes into play and
why we can see something like the above screenshot.

BASIC MODR/M REDUNDANLCY

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

(/r)
(In decimal) /digit (Opcode)
(In binary) REG =

Effective Address Value of ModR/M Byte (in Hexadecimal

11,1 NN
| MMONDmPWLO

EAX]+disp83
ECX]+disp8
EDX]+disp8
EBX]+disp8
--][--]+disp8
EBPJ+disp8
ESI}+disp8
EDI}+disp8

EAX]+disp32
ECX]+disp32
EDX]+disp32
EBX]+disp32
—J[--]+disp32
EBPJ+disp32
ESI}+disp32

EDI]+disp32

EAX/AX/AL/MMO/XMMO

| mm b aaaaa
N=0 | NOUunh_hWN-=0O

B Eaa 0000 | == a—0000 | 2= 2m0000 | mm—a—
LL 00— o00 | ==00==200|==00=2200|==00
-0-0-0-0|-=0-0-0~-0|~=0-=0-0-0|=0~-0

EDI/DI/BH/MM7/XMM7

In the previous slide it seemed like magic that we
could just swap out the machine opcode and leave
the operand data (OxCO) alone. This isn't always the
case. With the different encodings, the vertical and
horizontal parts of the table get swapped. But in the
case of using the same register with itself, it's
symmetric enough to not change the value in the
table.

— NASMS INTERPRETIVE DANCE =

IN SIB

This is another byte saving optimization.
The next slide will follow the maze of the
MODR/M + SIB byte to find out why

—.. NASMS INTERPRETIUVUE DANCE
— IN SIB

VO (VORI I 33 04 00 or eax, dword ptr [eax+eax]
eax, Leax - eaxﬂ 3304 66 xor eax, dword ptr [eax+eax] |8

So in the top 2 screenshots, we are comparing two
different assembly instructions to the machine code
nasm outputs on the right. Notably, both instructions
are converted to the [eax + eax] form. It is logically
the same as [eax * 2], what does nasm have against
scaling eax?

It is because of the side effects of not having a base
register when using SIB. You can have 'none' for a
scaled register, but having 'none’ (or [*]) for the base
register comes at the cost of having to use a 32-bit
displacement. This was covered a few slides back
(the 3 options the [*] uses).

If we take [eax * 2] literally, it doubles our machine
code for the instruction. Assemblers do not see this
as ideal

NASM IS TOLERANT TO
UR BULLSHIT

eax, [eax * 5] 33 04 86 | xor eax, dword ptr [eax+eax*d ‘__A_
eax, [eax * 2 - eaxﬂ 33 00 Xor eax, dword ptr [eax] .

But what's really interesting is what kind of bullshit
assemblers like nasm will put up with.

First of all, there is no scale of * 5; only 1, 2, 4, and 8.
But nasm is smart enough to look at this instruction
and decide it is logically the same as eax + eax * 4

Finally, scaling by something non-existant is one
thing, but there is no such thing as subtraction in our
pointer format, but it is valid assembly to nasm.
Nasm is smart enough to look at [eax * 2 — eax] and
know that it is pretty much the same thing as just
[eaX]

| love nasm

TEST R32, R/M32

* TEST 32-bit register with a 32-bit register OR 32-bit memory
location

* This form can be written in Assembly Language

* But there is no machine code representation of it

| like this one. This slide is saying that you can write
something in assembly like: TEST EAX, [EAX]

The thing is, there is no machine encoding to
represent this. We previously discussed how we
needed more than one encoding to mitigate being
able to use a pointer for the source or destination. So

what's going on here?

We will explore in the next couple slides

CMP R32, R/M32

eax, [eax]
[eax], eax

3b 00 | cmp eax, dword ptr [rax]
39 00 | cmp dword ptr [rax], eax

This slide shows the two different encodings of the
cmp instruction with 32bit operands.

The last 2 screenshots compare the source
assembly with the resulting machine-code in a
debugger.

TEST R32, R/M32

eax, [eax]
[eax], eax

85 00 | test dword ptr [rax], eax
85 00 | test dword ptr [rax], eax

IR Ve Veld D awth ol et 2 P

If we write the assembly shown on top, we get
machine code comparable to the middle image.

What we see here is that the first instruction gets
interpreted and converted by swapping the operands
around to its only supported encoding. That is, Test
r/m32, r32.

We see the encoding for this in the Intel manual (last
image). Trust me, there is not corresponding
encoding for the operands swapped around like
other sane instructions.

So can we swap these operands and logically have
the same results?

BUT WHY?

* Review:
* CMP = SUB (just for flags)
* TEST = AND (just for flags)

+ +5-3=8
*3-5=-2

. *5AND3=1
" «3AND5=1

The answer is yes. We compare CMP and TEST to see why.

Both of these instructions act like a math/logic instruction but
without storing the result; it just does the instruction for the side
effect.

CMP is like subtraction and TEST is like a logical AND. CMP
doesn't SUB though, nor does TEST do an AND. They just set the
flags so conditional jumps can have more intelligent behavior

If you try to do some commutative stuff, you see subtraction
obviously isn't commutative, swapping the operands gives you
different results.

TEST (and AND) on the other hand are commutative, swapping
the operands gives the same result. Therefor you only really do
need one encoding to represent both orders. So assemblers look
at your un-encodable instruction and converts it into something
that does the same thing

REDUNDOSOURUS REX

This is just a 64-bit prefix hack. In order to access all
of the extra registers that come with 64 bit
processors, but also remain backwards compatible,
Intel chose to prefix instructions with a byte that
would change what the registers end up being.

Of course, some of the old registers are also
encodable with the prefixes, and of course there are
many redundancies to this; as the image of this slide
demonstrates.

LFENCE-Load Fence

‘Opcode Instruction Compat/ Description
Leg Mode

OF AE €8 LFENCE Valid Serializes load operations.

SFENCE-Store Fence

Opcode* Instruction Compat/ Description
Leg Mode

OF AEF8 SFENCE Valid Serializes store operations.

MFENCE—Memory Fence

'Opcode Instruction Compat/ Description
Leg Mode

ol | OF AEFO MFENCE Valid Serializes load and store operations.

There are 3 different types of 'fence’
instructions, each of them have the
recommended machine code.

REDUNDANT FENCING

section
global

_start:

=) 00000000 : 00400080 6T ae e8 1fence
00000600 : 00400083 [6f ae T8 sfence
00000000 : 00400086 |6Ff ae TO mfence

We can see that the suggested machine code is
dutifully used when comparing the assembly source
and the machine code output from the disassembly

=) 00800000 : 68000060 1lfence
00000000 : 08000063 lfence
00000000 : 08000066 1fence
00000000 : 08000069 Lfence
00600000 : 6800006C 1fence
00000000 : 0800006 T lfence
00000000 : 08000072 1fence
00000000 : 08000075 1lfence
000600000 : 08000078 sfence
00000000 :0800007Db sfence
60000000 : 0800007 sfence
00000000 : 08000081 sfence
00000000 : 08000084 sfence
00000000 : 68000087 sfence
00000000 : 6800008a sfence
00000000 : 6800008d sfence
00000000 : 08000096 mfence
00000000 : 08000093 mfence
00600000 : 68000096 mfence
00000000 : 08000099 mfence
00600000 : 6800009C mfence
00000000 : 0800009 mfence
00000000 : 080000a2 mfence
00000000 : 680600a5 mfence

However, there is a lot of redundancy on this one. It
so turns out that Intel suggests that this can be done
with direct machine code. There's no real benefit to
using any of these alternate encodings, however.

INTEL SAYS THIS IS OKAY

bl Snecifcation of the instruction’s opcode above indicates a ModR/M byte of E8, For this instruction, the processor
ignores the r/m field of the ModR/M byte. Thus, LFENCE is encoded by any opcode of the form OF AE Ex, where xis
in the range 8-F.

Specification of the instruction's opcode above indicates a ModR/M byte of F8. For this instruction, the processor

ignores the r/m field of the ModR/M byte. Thus, SFENCE s encoded by any opcode of the form OF AE Fx, where X S
s in the range 8:F. :

Specification of the instruction's opcode above indicates a ModR/M byte of FO. For this instruction, the processor
ignores the r/m field of the ModR/M byte. Thus, MFENCE is encoded by any opcode of the form OF AE Fx, where X
g 5 In the range -7,

This is the part of the Intel manual that suggests you
can use the extra 7 other end nibbles for these fence
instructions.

INST REG, IMM' REDUNDANCY ==

CMP—Compare Two Operands

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

3Cib CMP AL, imm8 Valid Valid Compare imm8 with AL
3D iw CMP AX, imm16 Valid Valid Compare imm16 with AX.
3Did CMP EAX, imm32 Valid Valid Compare imm32 with EAX.

REXW + 3D id CMP RAX, imm32 Valid NE. Compare imm32 sign-extended to 64-bits
with RAX.

80/7 ib CMP r/m8, imm8 Valid Valid Compare imm8 with r/m8.
REX+80/7 ib CMP /m8’, imm8 Valid NE. Compare imm8 with r/m8.

In similar fashion to the very first redundancy
explored in this presentation, there are many
instructions that have an encoding for putting an
immediate value into just the AL/AX/EAX register.
This is because this register is so common, might as
well have reduced machine code for it.

There is also the more generic encoding that allows
for putting an immediate value into a MODR/M+SIB
encodable operand. The redundancy comes in
because AL/AX/EAX can be one of those options.

INST REG, IMM' REDUNDANCY

adc al, 85 adc eax, Ox55555555
adc al, 85 adc eax, Ox55555555
add al, 85 add eax, 0x55555555
add al, 85 add eax, Ox55555555
and al, 85 and eax, 6x55555555
add al, 85 and eax, O6x55555555
cmp al, 85 cmp eax, Ox55555555
cmp al, 85 cmp eax, Ox55555555
or al, 85 or eax, Ox55555555
or al, 85 or eax, Ox55555555
sbb al, 85 sbb eax, Ox55555555
sbb al, 85 sbb eax, 6x55555555
sub al, 85 sub eax, Ox55555555
sub al, 85 sub eax, Ox55555555
xor al, 85 xor eax, Ox55555555
xor al, 85 xor eax, Ox55555555
test al, 85 test eax, 0x55555555
test al, 85 test eax, 0x55555555

This slide shows all of those redundancies

REDUNDANT BIT INSTRUCTIONS

Bl RCLURCR/ROL/ROR-—Rotate

Opcode** Instruction

|pos2 RCL /m8, 1

REX +D0 /2 RCL /m8* 1
8 (D272 RCL r/m8, CL

REX +D2 /2 RCL /m8*, CL

[corz v RCL r/m8, imm8
REX +C0/2 ib RCL /m8”, imm8
D172 RCL /m16, 1
D372 RCL /m16, CL
C12ib RCL /m16, imm8
D1/2 RCL /m32,1
REXW + D1 /2 RCL r/m64, 1

D3/2 RCL /m32, CL
REXW + D3 /2 RCL r/m64, CL

[c1rzib RCL /m32, imm8
| REX.W + C1 /2 ib RCL r/m64, imm8

Compat/
Leg Mode

Valid
NE.
Valid
NE.
Valid
N.E.
Valid
Valid
Valid
Valid
NE.

Valid
N.E.

Valid
N.E.

Description

Rotate 9 bits (CF, /m8) left once.

Rotate 9 bits (CF, /m8) left once.

Rotate 9 bits (CF, /m8) left CL times.
Rotate 9 bits (CF, /m8) left CL times.
Rotate 9 bits (CF, /m8) left imm8 times.
Rotate 9 bits (CF, /m8) left imm8 times.
Rotate 17 bits (CF, /m16) left once.
Rotate 17 bits (CF, /m16) left CL times.
Rotate 17 bits (CF, /m16) left imm8 times.
Rotate 33 bits (CF, /m32) left once.

Rotate 65 bits (CF, /m64) left once. Uses a 6
bit count.

Rotate 33 bits (CF, /m32) left CL times.

Rotate 65 bits (CF, r/m64) left CL times. Uses a
6 bit count.

Rotate 33 bits (CF, /m32) left imm8 times.
Rotate 65 bits (CF, /m64) left imm8 times.

Speaking of doing something so common that Intel
provides a direct smaller machine code encoding for
it; bitwise instructions like rotating and shifting are
often done by just one bit. Because of this, there's a
shortcut to have the immediate operand be just '1'.

There is also the more generic 8-bit immediate
operand. But obviously '1' is a valid value in this

encoding as well.

So this is the image of showing all of those
redundancies

BRANCH HINTS

PROGRAMMING WITH STREAMING SIMD EXTENSIONS 2 (SS€2) B

11.4.5 Branch Hints

SSE2 extensions designate two instruction prefixes (2EH and 3EH) to provide branch hints to the processor (see
“Instruction Prefixes” in Chapter 2 of the Intel® 64 and |A-32 Architectures Software Developer’s Manual, \olume

S). These prefixes can only be used with the Jcc instruction and only at the machine code level (that is, -
Ino mnemonics for the branch hintsjR

74 fe "jz 0x0060600008048060
3e 74 fb| "jz 0x0060600008048060

There's no real good reason to manually use a
branch hint. There's also no way to do it directly with
assembly.

However, you can manually machine the prefix in
front of a branch instruction. It wont really affect
much, but hey, you can (when you can't in
assembly).

INTEL HIDES SAL

* SAL = Shift Arithmetic Left

~ *Does the same thing as Shift Left

(SHL)

* Therefore, everything is SHL

Similar to not having our assembly converting our
TEST instruction to a equivalent form; SAL(Shift

Arithmetic Left) gets converted to SHL(Shift Left).
SAL and SHL are technically equivalent. The Intel
manual recommends this and assemblers obey it.

The difference here is that there really is an encoding
for SAL, and it is functional.

INTEL HIDES SAL

7 section .text
- global start

b 55 mov al, 85
do e0O shl al, 1
do e0O shl al, 1

SHL r/m8, 1 M1 Valld Vald Multiply /mBby 2, once.
SAL r/m8, 1 M Valld Vald Multiply /mBby 2, once. e

Here is our assembler converting our SAL instruction
in assembly to SHL when it gets to machine code.

Note that even the machine code in the Intel manual
is the same for SHL and SAL.

We will get to this next, but the /4 represents the
specific instruction, where the DO represents the
group of instructions. For instance, /5 would be SHR
(Shift Right).

INTEL HIDES SAL

il Opcoce

(roup | Mod 76

Encoding of Bits 54,3 of the ModR/M Byte (bits 2,1,0n parenthesi)

]

010

o

100

101

10

1l

04

1 |mem, 11B

OR

ADC

$68

AND

SuB

XOR

CP

¥

1A |mem,ﬂa

C0.C1 reg,imm
00, D1reg, 1
02, D3reg, CL

mem, 118
2

ROR

RCL

RCR

SHLISAL

SR

This table shows all of these /n numbers. We see
that under '100' or /4, SHL and SAL are combined.

More interestingly, we notice that '110' or /6 is empty.

There is no way to mess around with this in
assembly language, but we can do this directly in
machine code to see what happens.

4
20
7.8-8-

USING SAL

do el
do fo

55 55 55| mov eax, 0x55555555

sal al,
sal al,
sal al,
sal ax,
sal ax,
sal ax,

sal eax,
sal eax,
sal eax,
sal rax,
sal rax,
sal rax,

1
cl
66
1
cl
66
1
cl
66
1
cl
66

shl al,
sal al,

Ot

1
1

 ACHIEVEMENT UNLOCKED

yoU ¢an now use SAL instructions!

R

It is SAL. After testing it, it works. SAL unlocked!

HIDDEN TEST

Encoding of Bits 5,4,3 of the ModR/ [

Opcode Mod 7,6 000

80-83 mem, 118 ADD
8F mem, 118 POP

CO0,C1 reg, imm mem, 11B ROL
DO, D1 reg, 1
D2, D3 reg, CL

mem, 11B TEST
Ib/lz

mem, 11B INC
FE Eb

6 mem, 11B INC near CALL™ | far CALL
Ev Ev Ep

mem, 11B SLOT LLDT LTR
Rv/Mw 1 Ew Ew

mem SGDT LGDT LIDT
Ms Ms Ms

F6, F7

There's an encoding under the machine code of
OxF6 (8-bit) and OxF7 (32-bit) for the TEST
instruction, as in TEST EAX, 0x11223344.

We will use the 32-bit encoding for this example.
This is a /0 encoding, to mean TEST, as in /2 would
mean NOT and /3 would mean NEG and so on.

You'll notice there is a blank spot in this table that
would have an instruction for /1. It so turns out that
this is also a TEST instruction. If you machine
encode this, the processor will run this exactly as the
/0 test.

Your mileage will vary depending on the
disassembler you use, for whether it tells you it is a
TEST instruction or not...

HIDDEN TEST

b8 00 00 6c d5| mov eax, Oxffffffffd50c0000
50 push rax

9d popfd

b8 44 33 22 11 mov eax, 0x11223344

f7 c8 dw Oxc8f7

bb cc dd ee 90| mov ebx, Oxffffffff90eeddcc
90

%90

%90

In the case of the EDB (Evans Debugger), the
Instruction is not disassembled showing the
TEST it actually is. We instead see a dw (data
word directive) of Oxc8f7 and then a mov
Instruction.

This 'moV' instruction will never run because it
doesn't exist, it is actually part of the operand
data of the TEST instruction. This instruction
should be:

TEST EAX, Oxeeddccbb

This TEST instruction is what the processor will
actually execute

LOAD INEFFECTIVE ADDRESS

LEA—Load Effective Address

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode

8D/r LEAr16,m RM Valid Valid Store effective address for min register r16.
8D/r LEAr3Z2m RM Valid Valid Store effective address for m in register r32.
REXW +8D /r LEA r64m RM Valid NE Store effective address for min register r64.

9 0000000: 848666 b8 05 69 00 00| nov eax, 5 o Registers
0080008: 08048065 bb Le 00 00 60 mov eb, 30 ,
SO (000600:08048063 Bd 44 dB B2 | lea eax, [raxtrbx'8+10) v
B o) 0000060804695 00 2¢ add byte ptr [rsi], ch RAX: 0080608096006

What the Load Effective Address does is stores the
pointer address into a register. So not the value of
the address into the register, but the actual address
that the pointer would point to.

In the above example, we are running: LEA EAX,
[RAX + RBX * 8 + 10].

Knowing EAX(RAX) is 5 and EBX(RBX) is 30
(decimal). So [5 + (30 * 8) + 10]. Simplify again to [5
+ 240 + 10]. Finally, this simplifies to 255. In hex this
is Oxff.

Note that RAX/EAX has Oxff as it's value after we run
that LEA instruction. That's what LEA does in a
nutshell. Compilers more often use this as a one
instruction math hack.

LOAD INEFFECTIVUE ADDRESS

xlogicx@LinuxMintl7 ~ $ cat lia.asm
section .text
global _start

_start:

lea eax, eax

xlogicx@LinuxMintl7 ~ $ nasm -f elf lia.asm -
lia.asm:5: error: invalid combination of opcode and operands

=) 00000000 : 08000066 |8d cO lea eax, (invalid)
RRAKAAAA A308RAA DA 06 e -
Illegal Instruction Fault

The debugged application attempted to execute an illegal instruction.

(1)
u If you would like to pass this exception to the application press
Shift+[F7/F8/F9]

Because of what this instruction does, it only makes sense
to have a register as the dest operand and a pointer as the
source operand.

However, the Encoding of the LEA instruction uses the
MODR/M byte. This means that a register could be
encoded with both operands (like and MODR/M based
instruction).

If we try to do this in assembly, we get an error that we
used an invalid combination of opcode and operands.

That doesn't stop us from directly encoding LEA EAX, EAX
(8D CO).

However, all of this is fairly pointless as this instruction IS
indeed invalid and will cause an error if it is executed. But
in principle, this is a specific error that would be harder to
achieve in assembly alone (without being able to machine
hack)

PREFIX
ABUSE

BSWAP-Byte Swap

Opcode Instruction Op/ 64bit Compat/ Description T

En Mode LegMode 16-bit register?
OF (B+rd BSWAP 32 0 Valig* Valid Reverses the byte order of a 32-bit register,
REXW + OF (8+rd BSWAP r64 0 Vald NE Reverses the byte order of a 64-bit register,

Reverses the byte order of a 32-bit or 64-bit (destination) register. This instruction is provided for converting little-
endian values to big-endian format and vice versa, To swap bytes in a word value (16-bit register), use the XCHG
instruction. When the BSWAP instruction references a 16-bit register, the result is undefined.

The BSWAP instruction can be used to reverse all of
the bytes in a register. Notice that there is only an
encoding for 64-bit and 32-bit registers, but not 16-bit
registers. Even though 16-bits is enough bits to
reverse 2 bytes. Why can't we do this?

Challenge accepted!

xlogicx@xlogicxMM cat bswap.asm
section .text
global start

start:

bswap ax

xlogicx@xLlogicxMVM nasm -f elf64 bswap.asm
bswap.asm:5: error: invalid combination of opcode and operands

This is us in assembly attempting to write an
instruction that uses bswap on a 16 bit register:
BSWAP AX

Of course we get an error saying that we used an
invalid combination of opcode and operands

Operand-size override prefix is encoded using 66H (66H is also used as a mandatory prefix for some
instructions),

The operand-size override prefix allows a program to switch between 16- and 32-bit operand sizes, Either size can
be the default; use of the prefix selects the non-default size.

Other use of the 66H prefix is reserved; such use may cause unpredictable behavior.

In 32-bit x86 (64-bit is similar but not exactly the
same), there are prefixes that modify the operand
sizes. For many instructions there is no encoding for
16-bit instructions, just an encoding for 8-bit and 32-
bit. In order to use a 16-bit encoding, you should use
a 0x66 or 0x67 prefix before your instruction
(depending on what part of the instruction you
wanted to override)

So we put a 0x66 in front of our BSWAP EAX and
achieve BSWAP AX.

It should be noted however that this instruction
doesn't work as intended (in my experience, it just
clears the register completely)

REP PREFIX

For the following string instructions:

INS, MOVS, OUTS, LODS, STOS, CMPS,
and SCAS

Ignored on all other instructions

s except for repeating a NOP

1 section .text
global start

0804:8060 |f3 90| pause

_start: 0804:8062 |f3 90 pause

rep nop
pause

The REP prefix can be used to repeat an instruction.
This is really only intended to be used for instructions
that operate on strings, so it doesn't do anything to
any other instruction. The REP prefix byte is OxF3

But there is one interesting exception, the screenshot
shows these two different assembly instructions and
how they mean the same thing to the processor.

NP Vald Vld Ongbyte no-operaton nstruction

This is because for whatever reason, the pause
instruction is machine encoded as 0xF390.

CONSISTENT INSTRUCTION SIZES

06090608 9800060bb 08 0 00 66 | nov ebx, 646800960 o 00006086: 630605667 67 67 67 67 67 67 67 67 67 bb 66 0 09 8| mov ebx, 6403606660
60600009: 68000665 66 b8 2f 62 nov ax, 0x622f 06606666: 68000861 66 66 65 66 66 66 66 66 66 66 66 66 b8 2f 62| mov ax, Ox622f
00600606 :08060069 66 89 63 nov word ptr [rbx], ax 06000009: 08000072 66 66 66 66 66 66 66 66 66 66 66 66 66 89 03 | mov word ptr [rbx], ax
60600009: 0800066¢ 66 b8 69 6e mov ax, Ox6e6d 06600666: 6800085 66 66 66 66 66 66 66 66 66 66 66 66 b 69 6 | mov ax, Ox6e69
00000606 :98000670 66 89 43 62 mov word ptr [rbx+2], ax [00066608:0806669c 66 66 66 66 66 66 65 66 66 65 66 66 89 43 62| mov word ptr [rbx+2],
00000606 :08000674 66 b8 2f 73 nov ax, Ox732f 00900009: 080009ab 66 66 66 66 66 66 66 66 66 66 66 66 b8 2f 73| mov ax, Ox732f
00600606 :08060678 |66 89 43 64 mov word ptr [rbx+d], ax [00600066:0800060a 66 66 66 66 66 66 66 66 66 66 66 66 89 43 64| mov word ptr [rbx+d],

B 000600006:6800007¢ |66 b8 68 60 nov ax, 104 06060000: 080060<9 66 66 66 66 66 66 66 66 66 66 66 66 bB 68 00 mov ax, 104
00600009: 08000686 |66 89 43 66 mov word ptr [rbx+6], ax [60600066:080006d8 66 66 66 66 66 66 66 66 66 66 66 66 89 43 66| mov word ptr [rbxt6],
60660009: 68000684 66 b8 66 60 nov ax, 6 06600666: 6800087 66 66 66 66 66 66 66 66 66 66 66 66 b 66 60| mov ax, 0
00600600 : 8060688 66 89 43 68 mov word ptr [rbx+8], ax [60600066:08000616 66 66 66 66 66 66 66 66 66 66 66 66 89 43 68| nov word ptr [rbx+8)],

N 00000000: 6600006¢ 66 b8 00 68 mov ax, 0x0800 00000009: 08000105 66 66 66 66 66 66 66 66 66 66 66 66 b8 08 08 mov ax, 6x6800
00000606 : 8060690 66 89 43 6a nov word ptr [rbx+10], 06060000 08000114 66 66 66 66 66 66 66 66 66 66 66 66 89 43 Ba | mov word ptr [rbx+16],
B0800009: 68060694 66 b8 66 60 nov ax, 6 06060000 08000123 66 66 66 66 66 66 66 66 66 66 66 66 b8 0O 60 mov ax, 6
60800000: 08000098 (66 89 43 6c | mov word ptr [rbxt12], 03000 cmae] s e - it G -G ook . BesATAAR

0800:0067 |3 f3 f3 3 f3 3 3 f3 3 f3 13 66 b8 2f 62

66600006 :6806089c 66 b8 66 60 | mov ax, 0 000000csso:co7e |13 13 13 13 3 13 13 13 13 13 13 13 66 89 63| re

3 3 f3 £3 3 13 3 3 3 3 66 b8 69 6e | re

0000000:08000020 66 89 43 6 | mov word ptr [rbxe1d], ax | O000Geeessesc BB BB B I e 6 remw wra ue fewe. o [rhsld],

6060000:68006024 b8 6b 60 60 60 | mov eax, 11 000000c800:00cs 12 12 13 13 13 2 12 12 13 13 13 68 b8 68 00

0040008000629 b 00 60 00 68 | v ebx, ExBA0060 Bfamzosr 22 R e e o e a0
80900000:60000e b9 08 00 60 66 | mov ecx, 6x35000668 figopgeece:eiesim mn R R e RO E R WG| owe 000068
00000666 800083 89 ca mov e, ecx 00000 - -
006869960: 0860980583 <2 64 ad ed, 4 0gt00es

66600000 : 68060808 cd 80 int 0x80

laa|f3 3 3 £3 3 f3 f3 3 f3 3 3 f3 3 cd 80

The cool thing about this prefixes, is considering what
would happen if you prefix a prefixed instruction with
another of the same prefix. The answer is nothing. There is
a limit to how many prefixes you an use; the instruction can
be no larger than 15 bytes (you will get an error otherwise).

This screenshot shows some functional shellcode, and a
couple of examples of the same code padded with prefixes.
These examples make each instruction take the same
amount of machine code bytes as every other instruction. |
can't think of a reason why this would be useful, but it's still
pretty cool.

FULL OFFSETS
31 84 00 60 00 06 00 xor dword ptr [rax+rax], eax

1

2 section .text

3 global start
start:

[rax+rax], eax

31 04 60 xor dword ptr [rax+rax], eax

Here's something interesting, looking at the top
instruction, the disassembly says that the instruction
Is xor [rax + rax], eax

However, if we actually type that instruction and
assemble it, we get the same disassembly, but
different machine code.

What the hell is going on here?

This is just more of nasm's interpretive dance.
Obviously we don't want the first instruction, this is
just the 'put a null' in it trick. We obviously want the
version with less bytes right?

FULL OFFSETS

section Jext
start

MULTIBYTE NOP

NOP r/m32 M Valid Valid Multi-byte no-operation instruction.

Table 4-9. Recommended Multi-Byte Sequence of NOP Instruction

Assembly Byte Sequence
| 66 NOP | 66 90H
NOP DWORD ptr [EAX] OF 1F 00H
NOP DWORD ptr [EAX + O0H] OF 1F 40 00H
NOP DWORD ptr [EAX + EAX*1 + 00H] OF 1F 44 00 O0H
66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 OF 1F 44 00 00H
NOP DWORD ptr [EAX + 00000000H] OF 1F 80 00 00 00 00H
NOP DWORD ptr [EAX + EAX*1 +00000000H] OF 1F 84 00 00 00 00 00H
66 NOP DWORD ptr [EAX + EAX*1 +00000000H] 66 OF 1F 84 00 00 00 00 00H

That is unless we don't.

The MultiByte NOP is the argument for not wanting
our assembler to interpret our assembly into
something optimized.

The MultiByte NOP allows for many different bytes
because it takes advantage of how multibyte the
MODR/M can be. The MODR/M argument doesn't
actually contribute anything to the instruction in any
meaningful way, it is just a dummy operand to add to
the instruction size in a variable way.

So I'm going to take the suggested assembly in the
intel manual and...

MULTIBYTE NOP [SUGGESTED)

section
global

start:
db 0x66

dword [eax]
dword [EBX
dword [EBM
word [eax

dword [eax
dword [eax

C
word [éax + eax

...and I'm gonna put it in an assembly source file and
assemble it with nasm...

MULTIBYTE NOP [SUGGESTED):
TEH UNDERWHELM

66 90

67 0f 1f 60

67 0f 1f 60

67 0f 1f 64 00

66 67 6f 1f 64 00
67 0f 1f 60

67 0f 1f 64 00

66 67 6f 1f 04 00

This is our result...

This for sure got an interpretive dance performed on
it.

MULTIBYTE NOP [SUGGESTED):
W/0 NULLS

section .text
global start

start:

db 0x66

2ax + eax*2 + 11h]
word [eax 2ax*¥2 + 11h]
dword [eax + 11111111h]
dword [eax + eax*2 + 11111111h]
word [eax + eax*2 + 11111111h]

| next try to mitigate this by putting some non null
offsets into the pointers, this prevents the assembler

from optimizing them out.

Of course we are misadventuring from what Intel
suggests...

BETTER, BUT STILL SUCKS

66 90

@67 0f 1f 60
67 0f 1f 00

67 0f 1f 44 49 11
66 67 6f 1f 44 40 11
67 0f 1 80 11 11 11 11
el 7 0f 1 84 40 11 11 11 11

66 67 6f 1f 84 49 11 11 11 1

...but as you can see, it works a little bit better. But
only a little bit.

WHAT IT SHOULD LOOK LIKE,
BUT HAD TO USE DIRECT
MACHINE CODE

66 96
of 1f 66
of 1f 40 60
of 1f 44 60 00
66 6f 1f 44 00 00
S O 1f 80 00 00 06 00
Bl O 11 84 0 00 60 60 60
66 6f 1f 84 00 00 060 060 66

To get the (exact) machine code advertized in the
Intel manual, | could find no other way but to
manually program this in machine code

66 66 66 90
66 66 66 66 90
66 66 66 66 66 96

66 66 66 66 66 66 90

66 66 66 66 66 66 66 90

66 66 66 66 66 66 66 66 96

66 66 66 66 66 66 66 66 66 90

66 66 66 66 66 66 66 66 66 66 90

66 66 66 66 66 66 66 66 66 66 66 90

66 66 66 66 66 66 66 66 66 66 66 66 90

66 66 66 66 66 66 66 66 66 66 66 66 66 90
666666 90 |66 66 66 66 66 66 66 66 66 66 66 66 66 66 90

But why go through any of that trouble!

I'd rather just be ignorant and prefix up a normal
NOP

SELF MODIFYING CODE

with basic arithmetic
Because similar machine code formats

INCrin Mo Vald Vald Inement dnbyte y 1, e

DEC rind M Vald Vald Decement rmBby 1. [N

Ilgnoring stuff like exploit development, an
understanding of machine code can also be
extremely useful for self modifying code. There are
MANY different strategies/techniques a programmer
could take to achieve cool self modifying code. We
will only really explore one PoC example here.

For this example, we can ADD a value to a [pointer]
that happens to be the memory location of another
instruction. Instructions with the /n format have the
instruction itself encoded in the number of /n. For
example, INC is OxFE /0 and DEC is OxFE /1. If we
just added the right number to the right location of
the INC instruction, it would be convertible to a DEC
instruction.

SELF MODIFYING CODE

fe cO inc al
fe c8 dec al

fe 81 67 45 23 01 | inc byte ptr [rex+0x01234567] =

e fe 89 67 45 23 01 | dec byte ptr [rex+0x01234567]

11111110 11000000
11111110 11007000

This slide shows the machine code and assembly
tho show the very small differences.

The last image shows the machine code of the first
image in binary isolating out the 3 bits that control
which instruction it is.

In red, the 000 means INC and the 001 means DEC.
The difference to the 2 instruction is just one bit.

=— SELF MODIFYING CODE DEMO

o) 00000000: 0804860 b3 aa nov bl, Bxaa a| Registers
60060000: 08048062 80 2d 6a 80 04 68 18 | sub byte ptr [rip+6x0804806a), 24
00000009: 0804806980 1d 71 89 64 68 10 | sbb byte ptr [rip+6x08048671], 16 v
60000060: 6804807080 €3 55 and b, 85 RAX: 669660000606060
0804807360 2e add byte ptr [rsi], ch RBX: 0096600000000060

mov bl, Bxaa a| Registers

sub byte ptr [rip+0x0804806a], 24

add byte ptr [rip+6x08048671], 16 v

xor bl, 85 RAX: 0060600000060000 [
add byte ptr [rsi], ch RBX: 00600000000000ff

This demo will show a series of 3 instructions that
are using this trick. When you get to the 3"
instruction, it isn't the same instruction it looked like
before the program ran.

These 2 screenshots are more for the benefit of the
PDF version of these slides. Time permitting, a live
demo of this will be done during the presentation.

CACTLSCON 217 — BOOT AND PLAY

have in the bag because it helps get the
byte count down. The above trick that |
mentioned is a trick that | use In
TronSolitaire (
https://github.com/XlogicX/tronsolitare)

https://github.com/XlogicX/tronsolitare

ENOUGH OF THIS! MAKE A
TOOL DO IT!

IRASM:
Interactive Redundant ASeMbler

This is another 'demo’ slide. This is where |
demonstrate what the demo can do.

Hint: it pretty much does everything with the
concepts described in this whole talk. It's like
nasm_shell, but it outputs many other valid variations
of machine code that represents the same assembly
input.

File Edit View Search

irasm >
11540500

adc [ebp + eax], edx

111428
11542800

irasm > and eax, Oxffffffes
2SGEFFFFFF

81EQEGFFFFFF
662566FF
1E0GEFF

2466
80E066

irasm
83850

- or eax, 0x50

0050000000

66605000
6681C85000

0cse
80850

~ sfence

irasm >
GF84FBFF

660FB4FC
T4FF

irasm >
83900537
839C2837

irasm >

3}

irasm =
318

3309

irasm >
Do3C18

co3c1801
€03C0301
COBC1800

07C 18001
€07C0300

D03C03
DOBC1800
71800

0670300

irasm >
98123456

jz ox
FRFF
FF

1

sbb_dwor
13371358
13371358

push ecx

xor ebx, ecx

sar byte [eax + ebxl, 1

00000001
01
o1

600000

call Oxbc9a: 0x78563412
789ABC

d [ebp + eax + 0x13;
E

Terminal

ade

ade
ade

and

and

je
jo
je
bb
sbb

call

13371, 88
DWORD PTR [ebpseax*140x13371337),0x58

PDF UERSION ONLY

Help

DWORD PTR [ebp+eax*1+0x0], adx

DHORD PTR [eaxsebp*1], edx (Forced commtati:
DHORD PTR [eax+ebp*1+0x0], edx (Forced comm

eax, OxFFFFFFEE

eax, OxFFFFFFEE (r/ma2, imna2)
ax, OxFF66 (ax, immls)

eax, 0x50
x50 (eax, i
x50 (r/mi2,

32)

(al, im
al,0x50 (r/ug, imnd)

ox1

ox1 (WORD sized alternate)
ox1 (BYTE sized alternate)

File Edit View Search Terminal Help

hare metasplosc- framevork tools/ explos nas, shell. rb
& adc [ebpreaxs0x0], adx

operty) -
stative property, Additional null disps)

nasn - sbb_dword [ebp + e:
00000000 839C053713371358
nasm > push ecx
060000000 51 push ecx
xor ebx, ecx
[eax + ebx], 1
ar byte [eaxvebxl,1

nasm > sar
00000000 _D03C13 s:
nasm > call Oxbcga:Gx78563412
uownnoﬁ 9A1234567894BC call dword Oxbcda:0x78563412
nasm

DWORD PTR [eax+ebp*1+0x13371337],0x58 (Forced commtative property)

xrebx*1],0x1 (Explicit ims)

E PTR [ebxseax*1],0x1 (Forced

E PTR [emx+ebx*1+0;

PTR [sbx+eax*1+0x0],0x1 (Forced commtative prop:

1 (Forced c
5x01,1 (disps
PTR [ea

0xbc9a: 0x785634 12(Provided by Nasm)

commutat
PIR [eaxtebatisduol 0xl (dispo -
ox

tive property)
5p32 extended)

p8)

dditional null disps)

ommutative property
- disp32 extended)
x+al .1 (additional null)
R [ebx+eax*1+0x0],1 (Forced commtati:

5p!
property, Additional null disps)

This slide wont be displayed in the main
presentation, instead | will demo the tool live, but
since the PDF version can’t do that, this is a
screenshot showing irasm side by side with
nasmshell. The same assembly instructions are
entered into both, you see the left hand side is more
verbose.

THANKS/QA/LINKS

* m2elf.pl —interactive
* https://github.com/XlogicX/m2elf
*lrasm

* https://github.com/XlogicX/irasm
* My Blog

* xlogicx.net
* Twitter

* @XlogicX

| tend to speak fairly quick and am good at time
management, so | may have time for questions. It
really depends on this years DEF CON policy on
Q/A. Regardless, | will make myself available for
more in depth Q/A in the hangout room after | deliver
the talk.

This slide is more just to leave up the links to the
tools and my contact info / blog

https://github.com/XlogicX/m2elf
https://github.com/XlogicX/irasm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109

