
Trojan-tolerant 
Hardware & 
Supply Chain 

Security 
in Practice



Who we are

Vasilios Mavroudis
Doctoral Researcher, UCL

Dan Cvrcek
CEO, Enigma Bridge

George Danezis
Professor, UCL

Petr Svenda
CTO, Enigma Bridge

Assistant Professor, MUni



Highlights

▪ HSMs & Shortcomings

▪ Existing Solutions

▪ Lessons learned from airplanes

▪ Hardware Prototype

▪ Crypto Protocols 

▪ Attack-Defense Demo

▪ Politics, Distrust & Hardware Security



Hardware Security Modules

Physical computing device that safeguards and manages digital 
keys for strong authentication and provides cryptoprocessing.

Applications:
▪ Cryptographic key generation, storage, management

▪ Sensitive data handling and storage

▪ Application servers offloading

Crypto Operations are carried out in the device
No need to output the private keys!



HSM Threat Model
Common Use cases: 
PKIs, Card payment systems, SSL connections, DNSSEC, 
&Transparent Data Encryption for Databases

Certified to Common Criteria or FIPS 140:

▪ Anti-Tampering Protection

▪ Strong Random Number Generator

▪ Cryptographic key management



▪ Bugs

▪ Errors

▪ Backdoors/HT

CVE-2015-5464
The HSM allows remote authenticated users to 
bypass intended key-export restrictions …



Existing Solutions

▪ Trusted Foundries
� Very expensive

� Prone to errors

▪ Split-Manufacturing
� Still Expensive

� Again prone to errors

� Not 100% secure

▪ Post-fabrication Inspection
� Expensive

� A huge pain, doesn’t scale

▪ Secret-sharing
� Keys generated by a trusted 

party

� Only for key storage

Alternative approaches?



A solution from the sky (not the c loud)

Lockstep systems are fault-tolerant computer systems that 
run the same set of operations at the same time in parallel.

▪ Dual redundancy
allows error detection and error correction

▪ Triple redundancy
automatic error correction, via majority vote 

→ Triple Redundant 777 Primary Flight Computer



Not so fast…

▪ Fault-tolerant systems are built for safety
▪ The computations are simply replicated

▪ The majority vote part is using a trusted IC

Not enough for security!

Redundancy for security?



We did it!

Supported Crypto

▪ Random number Generation

▪ Key Generation & Management

▪ Decryption 

▪ Signing

Features

▪ Tolerates:
- faulty hardware components

- multiple backdoored components

- Colluding adversaries

▪ Provides resilience

▪ Tamper-resistant (FIPS-4)

▪ Easily Programmable (Java variant)



We did it!

Components

▪ 120 SmartCards

▪ Quorums of three cards

▪ 1.2Mbps dedicated inter-IC buses

▪ ARTIX FPGA controls the comm. bus

▪ 1Gbit/s bandwidth for incoming 
requests 



Smart Cards?

- 8-32 bit processor @ 5-20MHz

- Persistent memory 32-150kB (EEPROM)

- Volatile fast RAM, usually <<10kB

- True Random Number Generator

- Cryptographic Coprocessor (3DES,AES,RSA-2048,...)

- Limited attack surface, small trusted computing base

EEPROM

CPU

CRYPTO

SR
AM RO

M

RNG



Smart Cards?

Intended for physically unprotected environment
- NIST FIPS140-2 standard, Level 4

- Common Criteria EAL4+/5+ 

Tamper protection
- Tamper-evidence (visible if physically manipulated)

- Tamper-resistance (can withstand physical attack)

- Tamper-response (erase keys…)

Protection against side-channel attacks (power,EM,fault)

Periodic tests of TRNG functionality



Performance





Hardware Pic!

Custom-Board 
with 120 JCs

JavaCard 3.0.4

Gigabit link

Controller





Classic Key Generation
Single IC System
1. Bob asks for new key pair

2. Faulty/Backdoored IC generates key using 
broken RNG

3. Private Key is “securely” stored

4. Weak public key is returned

Properties
- Private key never leaves the box

- IC has full access to the private key

- Bob can’t tell if he got a “bad” key

Generate a 
key-pair
for me!



Distributed Key Generation
1. User asks for new key pair

2. ICs generate their key pairs

3. ICs exchange hashes of their shares

4. ICs reveal their shares

5. ICs verify each others’ shares

6. ICs compute the common public key

7. ICs return the common public keys

8. Bob verifies that all the keys are same





Classic Decryption

Single IC System

1. Bob asks for ciphertext 
decryption

2. Faulty/Backdoored IC decrypts 
ciphertext 

3. Bob retrieves plaintext

The IC need full access to the private 
key to be able to decrypt ciphertexts.

Decrypt this
ciphertext



Distributed Decryption
1. Bob asks for ciphertext decryption

2. His authorization is verified

3. ICs compute their decryption shares

4. Bob receives the shares and combines
them to retrieve the ciphertext

Properties

- No single authority gains access to the
full private key for the decryption

- If one IC abstains, decryption fails



Classic Signing

Single IC System

1. Bob asks for document signing

2. Faulty/Backdoored IC signs the 
plaintext and retains contents

3. Bob retrieves signature

The IC need full access to the private 
key to be able to sign plaintexts.

Sign this
plaintext



Distributed Signing I

Caching
1. Bob sends a caching request

2. The ICs verify Bob’s authorization

3. Generate a random group element 
based on j 

4. Bob sums the random elements

Properties
- Caching for thousands of rounds (j)

- Bob stores Rj



Distributed Signing II

Signing

1. Bob asks for document signing & 
sends Rj, j, and the hash of m

2. ICs verify his authorization

3. ICs check if j has been used again

4. ICs compute their signature share

5. Bob sums all signature shares

Properties

- All ICs must participate

- Significant speed up with caching



Key Propagation

A1

A3

A2

B1

B2

B3

1. Quorum A generates a public key

2. Then each IC in A splits its private key in 
three shares and sends them to B1, B2, B3

3. Each IC in B receives shares from A1, A2, A3

4. Each IC in B combines the 3 shares and 
retrieves its private key

The full public keys of A and B are the same!

Pub KeyPub Key



Mutual Distrust & Hardware Security
So far our argument was: 

“We can guarantee security if there is at least one honest
IC that doesn’t incorporate a backdoor or an error.”

However, when using COTS components it can be
hard to even trust that a single IC is not backdoored.



Mutual Distrust & Hardware Trojans

Government-level adversaries are unlikely to collude and/or share 
their backdoor details. Hence, we can reform our argument to be:

“We can guarantee security if there is at least
one non-colluding IC, even if it is untrusted.”



Mutual Distrust & Hardware Trojans

We can guarantee security if there is at least 
one non-colluding IC, even if it is untrusted.



A Kil l Switch?

wired.com

https://www.wired.com/2008/05/kill-switch-urb/


A Kil l Switch?

IEEE Spectrum

http://spectrum.ieee.org/semiconductors/design/the-hunt-for-the-kill-switch


Conclusions & Future

New architecture

▪ Decent performance & Small overhead compared to a single IC

▪ Existing malicious insertion countermeasure are very welcome!

▪ Suitable for commercial-off-the-shelf components

▪ Faulty hardware is no longer an end-game but a manageable problem

Future
▪ Distributed Symmetric crypto? SSL-accelerators etc

▪ Does it transfer to a more generic architecture?



Q & A


