Unboxing Android

Everything you wanted to know about Android packers _

Slava Makkaveev
Avi Bashan

Who Are We?

@Avi @Slava
R&D Team Leader at Check Point, former security Senior Security Researcher at Check Point, former Security
researcher at Lacoon Mobile Security. Researcher at Verint.

Experienced in OS Internal research, mobile security, linux
kernel. Vast experience in mobile OS research and linux internals.

“Boxing” Apps

e Malware authors use various “hoxing” techniques to prevent

o Static Code Analysis
o Reverse Engineering

o This can be done by proprietary techniques or 3rd party software

e This Includes
o Code Obfuscation
Anti Debugging
Anti Tampering
Anti Dumper
Anti Decompiler
Anti Runtime Injection

O O O O O

Maliciousness of Packed Apps

Malware
24.3%

Not Malware
757%

Analyzed 13,000 Apps (July 2017)

Techniques to protect an app’s
code

Apk Protection Techniques

o Obfuscators
e Packers
e Protectors

Apk Protection Techniques

o Obfuscators
e Packers
e Protectors

pm.getClass().getMethod("getPackageSizelnfo", String.class,

Class.forName("android.content.pm.IPackageStatsObserver")).invoke(pm, packinfo.packageName,
new |PackageStatsObserver.Stub() {

public void onGetStatsCompleted(PackageStats pStats, boolean succeeded) {

!

D
v6.getClass().getMethod("getPackageSizelnfo", String.class,
Class.forName("android.a.a.a")).invoke(v6, ((Packagelnfo)v0_5).packageName,
new a() {
public void a(PackageStats arg3, boolean arg4) {
}
):

Apk Protection Techniques

e (bfuscators
e Packers
e Protectors

Apk Protection Techniques

APK APK

Packer

e (Obfuscators

Packing Loader
® Packers Original Process
e Protectors

V2! Encrypted

DEX

Apk Protection Techniques

e (bfuscators
e Packers
e Protectors

APK

Packer
Loader

Encrypted
DEX

APK

Packer
Loader
Execution

Original
DEX

Apk Protection Techniques

e (bfuscators
e Packers
e Protectors

Apk Protection Techniques

e (bfuscators
e Packers
e Protectors

APK

Original

DEX

APK

Protector

Protection Loader
Process

Encrypted
Modified
DEX

Apk Protection Techniques

e (bfuscators
e Packers
e Protectors

APK

Protector
Loader

Encrypted
Modified
DEX

Execution

APK

Protector
Loader

Modified
DEX

Back to Basics!

ART - Android RunTime VM

dex2oat

Provided an Ahead of Time (AOT) compilation
approach
to

e Pre-compilation at install time
o installation takes more time
o more internal storage is required

o OATvsJIT
o Reduces startup time of applications

o Improves battery performance
o Uses less RAM

DEX Loading Process

Lygote
process

fork()

App
process

classes.dex

dex2oat

App contains minimum one DEX file

App can load other DEX files during execution
Each DEX file will be compiled in OAT file
Android Runtime executes OAT files

Android Runtime checks DEX files checksum

OAT version of
classes.dex

OAT - Ahead of Time File

ELF Header

DYN section

oatexec

oatlastword

RODATA section

oat header/classes
dex meta/content

TEXT section
native instructions

is ELF

Three special symbols in dynamic section

o oatdata

o oatexec

o aotlastword
Original DEX file is contained in the oatdata
section
Compiled native instructions are contained
in the oatexec section

Android Java Native Interface (JNI)

Allows calling native code directly from JVM.

Execution path starts from System.loadLibrary

Used by some of the popular packers for the packing logic.
Packer library is called after activity is started

?l
—_—
(s
(qe)
e 1
—
— 1
Q
r—
=
Q
- -

Possible Approaches to Unpack an Android App

Find the algorithm

Extract DEX from compiled OAT
Dump DEX from memory

Runtime environment modification

Notable Previous Work

e Android Hacker Protection Level 0

o Tim Strazzere and Jon Sawyer
o DEFCON 22,2015
o Released a set of unpacking scripts

e The Terminator to Android Hardening Services
o Yueqgian Zhang, Xiapu Luo , Haoyang Yin
o HITGON, 2015
o Released DexHunter - modified version of Android Dalvik/ART VM

Our Approach

Goals

e What did want
o Find a solution that
m Require minimal changes to Android
m Will work on most of the packers
e How did we do it?
o Reversed most popular packers
o Patched few code rows of Android Runtime

Goals

e What did want
o Find a solution that
m Require minimal changes to Android
m Will work on most of the packers
e How did we do it?
o Reversed most popular packers
o Patched few code rows of Android Runtime

PROFIT

Analyzed Packers

Most popular packers encountered

o Baidu oo

e Bangcle Baiéch SE

e Tencent R —
® All y‘)r.u:a;~. WP Eaw
) 360 Jiagu Tencerﬂﬁiﬂ

e .. (and a few more) @

Abstract Packer Model

Load protected DEX Open DEX file
Find a class Map data
/\ libart.so
libc.so
open
Loader DEX read
mmap

Abstract Packer Model

Load protected DEX

Find aclass/\

Loader DEX

Load native part

libart.so

<protector>.so

Open DEX file
Map data

N
—

libc.so
open
read
mmap

Hook calls

Decrypt DEX
Read original data

_—

Protected DEX

Bangcle - Classification

Classes Files S achac
- ApplicationWrapper - libsecse Buce

. . . ¥ 8 guar
- FirstApplication - libsecmain

» ® MyClassLoader
- MyClassLoader - libsecexe » @ Uil
: 2

- ACGall - libsecpreload i Zhangue

» #io

- bangcle_classes (original dex)

Bangcle - Java Loader Implementation

assets/libsecexe.so — /data/data/<pkg>/.cache/libsecexe.so
assets/libsecmain.so — [data/data/<pkg>/.cache/libsecmain.so
assets/libsecpreload.so — /data/data/<pkg>/.cache/libsecpreload.so
assets/bangcle_classesjar — /data/data/<pkg>/.cache/classes.jar

System.load("/data/data/" + getPackageName() + "/.cache/libsecexe.so");
Acall.getACall().a1(...);
Acall.getACall().r1(..);
Acall.getACall().r2(...);

public class MyClassLoader extends DexClassLoader {

}

¢l = new MyClassLoader("/data/data/" + getPackageName() + "/.cache/classes.jar", ...);
realApplication = cl.loadClass(v0).newInstance();

Bangcle - Native Loader Implementation

Java Interface Native Functions Mapping

ACall { PE99OF6AOF789BC4BCI193BFFIF7281349
(byte[] arg1, byte[] arg2); (7] POCB333563819DC8A1657DDY41AETSD34 Func Offset Fune Offset
. , [7] p611E2FECIASC257212970451F5BAI158
(Appl!cat!on arg1, Context arg2); 7] sub_A205948C 0x4638 OXCFFC
(Application arg1, Context arg2); [7] PA35B3D2FFFCCTA4E3045A120C8FAFCOF
: : . [7] p6BEBACAOEF536929C3B29BFCFCCO70ES
(ObJ,BCt argl, Uhj_eCt argZ]i [¥] p6AC4374C46E1ABBBFAED813B58A3E018 0x8A44 0x9BC8
(Object arg1, Object arg2); |[7] p5758A293C7BA0EFOFAEE992CDEBBB34C
Object c3(Object arg1, Object arg2); [7] sub_A2059EBC
0: [7] p5F7D2555538480387DEE6F72B840DCFB 0x9184 0x566C
- 7] PCB6D6B21BA4GEGES] 399842534345051
e s o = v oars
B[7] PEAOO9FESF10D994F01101F3AAE496ABE
(byte[] arg1, byte[] arg2, byte[] arg3); 7] PSB6E60751234C53CC3D26D4C0D51245 0x103E8 0x63B4
ClassLoader rc1(Context arg1); [7] pC398E832391DE97E9FDSB6DS3EFCAFSS
: ; : Wl [7] p87AF52E8F95075E4805FEAAOF7F611E9
: (Object a.r;fﬂ, Ui c2 O it (7] PCEAA11B1E2B966C6B41ECE360A35FC3E 0x12E48 0x4AAD
Object set1(Activity argT, ClassLoader arg2); 7] sub_A2063084
Object (Ap.pl|c.at|un arg],) % iﬂﬁ'ﬁggiifg 0x4938 0x16828
(Appllcatmn arg1.], 7] sub A2063870
(Object arg1, Object arg2); [7] p6543834C664025CDBICCBBESEAAF5D21 0xDE38 0x126B4
0; % p49DA44DAF44302DADCCFCECCI9CBDCIEE
: . [7] sub_A2065FCC
(ContentProvider arg1); (7] sub_A2066148 0x4408 OxBFE4

: [7] sub_A20668A0

‘ [z p158870D4FEA35B9898E04995E1A552E8

sub_A2067700 0x44A0

Bangcle -

Class:

Type:

Machine:

Entry point address:

Start of program headers:
Start of section headers:
Size of program headers:

Number of program headers:

Size of section headers:
Number of section headers:

Dynamic section:

0x0000000c (INIT)
0x00000019 (INIT_ARRAY)

libsecexe.so

ELF32
DYN (Shared object file)
ARM

043 —0
52 (bytesinto file)) __— ——

92204 (bytes into file)
32 (bytes)

6

0 (bytes)

0

0x125A9
0x30C1C

Real entry point

Entry address points to compressed code (anti-debugging)
Start of section table is out of file bounders
No section table (anti-debugging)

Exception Index Table is out of file bounders (IDA crash)

Program headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
EXIDX 0x028584 0x00028584 0x00028584 0x00568 0x00568 R x4
LOAD 0x000000 0x00000000 0x00000000 0x131ec 0x131ec RE 0x8000
LOAD 0x018c1c 0x00030cTc 0x00030cTc 0x00520 0x01538 RW 0x8000
DYNAMIC 0x018¢80 0x00030c80 0x00030c80 0x00108 0x00108 RW 0x4
GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4
GNU_RELRO 0x018c1e 0x00030cTc 0x00030cTc 0x003e4 0x003e4 R 0x1

Bangcle - libsecexe.so

0xf4
0x9d0
0x1ch0
0x3b79
0x43e0

0x125a9
0x13150

HASH

SYMTAB

STRTAB

REL

Compressed code

TEXT (init code)

0x433c

0x12590

Copy code sections to an
allocated buffer.
Decompress 0x247b0 bytes
to 0x433c

- 0x433c

0x4638
0x4938
Oxde38
0xe050

- 0x28aec

al

r1

r2

JNI_OnLoad

Registration
com.secneo.guard.ACall
native methods: a1, r1,r2, ...

Bangcle - Processes

Function al —

Functionr2 —

Extract ELF /data/data/<pkg>/.cache/<pkg> from apk (Assets)

fork app process
execl /data/data/<pkg>/.cache/<pkg> <pkg> -1114751212 1 /data/app/<pkg>/base.apk 34 <pkg> 43 44 0
fork pkg process (from libsecmain.so::s0_main)
anti-debugging thread
fork pkg process if .cache/classes.dex (OAT) does not exist
LD_PRELOAD=/data/data/<pkg>/.cache/libsecpreload.so
LD_PRELOAD_ARGS=<pkg> 9 13
LD_PRELOAD_SECSO0=/data/data/<pkg>/.cache/libsecmain.so
execl /system/bin/dex2oat
-zip-fd=9 —zip-location=/data/data/<pkg>/.cache/classes.jar —oat-fd=13
—oat-location=/data/data/<pkg>/.cache/classes.dex —instruction-set=arm

ud_a76 28644 5019 1531220 49108 ffffffff b6e6b6d4 S <pkgname>
ud_a76 28881 28644 3516 768 ffffffff b6eb3504 S <pkg name>
ud_a76 28882 28881 2464 624 ffffffff b6eb3504 S <pkg name>

Bangcle - libc.so hook

Function r1

OxAFB46DA4

OxAFB46DA4

OO OC

(IR W

OO0

W W

o

b6e06000-b6e42000 r-xp 00000000 b3:15 830 /system/lib/

b6e42000-b6e44000 rwxp 0003cOOO b3:15 830 /system/lib/ libc func Offset libc func Offset

b6e44000-b6e47000 r-xp 0003e000 b3:15 830 /system/lib/

b6e47000-b6e48000 rwxp 00041000 b3:15 830 /system/lib/ 0x15BD8 0x14FAC

b6e48000-b6e5a000 r-xp 00042000 b3:15 830 /system/Llib/

b6e5a000-b6e5d00O r--p 00053000 b3:15 830 /system/lib/ 0x15F88 Ox14DA4

b6e5d000-b6e60000 rw-p 00056000 b3:15 830 /system/lib/ e .
0x15118 0x162F8
0x15420 0x166DC

0x14B9C 0x152FC

Bangcle - Summary

e C(reates a stub in Java activity to load native library.
o Native library is protected with different anti research techniques.
o Native library hooks libc for handling the opening of the OAT file.

Baidu - Classification

Classes Files g
- StubApplication - libbaiduprotect P
. » @ StubApplication
- StubProvider - baiduprotect1 (original dex)

¥ (= Asselts
[?| baiduprotect1.jar
v Libraries

v(=armeabi
» o libbaiduprotect.so

Baidu - Native Loader Implementation

public class A implements Enumeration {
public static native byte B(int arg0, Object arg1, ...);
public static native char C(int arg0, Object arg1, ...);
public static native double D(int arg0, Object arg1, ...);
public static native float F(int arg0, Object arg1, ...);
public static native int I(int arg0, Object arg1, ...);
public static native long J(int arg0, Object arg1, ...);
public static native Object L(int arg0, Object arg1, ...);
public static native short S(int arg0, Object arg1, ...);
public static native void V(int arg0, Object arg1, ...);

public static native boolean Z(int arg0, Object arg1, ...);

public static native void a();
public static native void b();
public static native String[] c();

Func Offset

a 0x23459
b 0x2345d
c 0x23461
V,.,B,C,S,I,J,FED,L | 0x25861

Baidu - libbaiduprotect.so

Change self protection
0x0 - 0x1000
Remove ELF header

0x1000

0x2e6d

0x2ead

0x23459
0x2345d
0x23461
0x25861

0x3cal8

0x4286¢

JNI_OnLoad

a
]
c
V.Z,B,C, S,)ED,L

TEXT (Entry point 1)

locoooooooocooooooocoooooooooo(

Change self protection
0x2000 - 0x3d000
Decrypt code

0x2e6d - Ox3ca/8

Baidu - JNI_OnLoad

a Anti-debugging
Registration of native methods: a, b, c, ...

Extract packed DEX /Assets/baiduprotect1.jar to /data/data/<pkg>/.1/1 jar
< Create empty DEX file /data/data/<pkg>/.1/classes.jar

Hook libart.so

Create DexClassLoader(/data/data/<pkg>/.1/classes.jar) + Merge with main class loader by
_ extending BaseDexClassLoader::pathList::dexElements

/

Baidu - Anti-debugging

Obfuscation
Logs disabling
For each /proc/ check that /proc/<pid>/cmdline does not contain gdb, gdbserver, android_server
For each /proc/self/task check that /proc/self/task/<pid>/status does not contain TracerPid
For each /proc/self/task check that /proc/self/task/<pid>/comm does not contain JOWP
Check android.os.Debug.isDebuggerConnected
select call (timer) based technique
inotify watch (IN_ACCESS + IN_OPEN) of
o [proc/self/mem
o /proc/self/pagemap
o For each /proc/self/task
m /proc/self/task/<pid>/mem
m /proc/self/task/<pid>/pagemap

Baidu - libart.so hook

b48a5000-b4cf2000 rwxp 00000000 fe:00 946 [system/1lib/
b4cf3000-b4cfdoOO rw-p 0044d00O fe:00 946 [system/lib/
b4cfdo0O-b4cfeddd rw-p 00457000 fe:00 946 [system/lib/

Function __android_log_print
No logs

Function execv
dex2oat hook:
Add environment variable ANDROID_LOG_TAGS=":f
Prevent code compilation: add --compiler-filter=verify-none command line parameter

Function open
Decrypt /data/data/<pkg>/.1/1 jar in case of /data/data/<pkg>/.1/classes.jar file loading

libe func Libart hook | Offset

read 0x309BC8 0xA75C
open 0x309BDC 0x8FAC
close 0x309BE4 0x9168
mmap 0x309BE8 0x9414
strstr 0x309C58 0x8BD8
fork 0x309F3C 0x92DC
waitpid 0x309F40 OxASE4
execv 0x309F4C 0xA324
_android_log_print | 0x309FAC 0xA750

Baidu - Summary

e C(reates a stub in Java activity to load native library.
e Native library is protected with different anti research techniques .
o Native library hooks libc for handling the opening of the DEX file.

NOT SURE\IF. REPOST

OR JUSTDEIAVU

libc::open == decryption

Bangle Baidu

Filter by file path:

| \
/data/data/<pkg>/.cache/classes.dex /data/data/<pkg>/.1 /classes.jar

Expect to see:

OAT

Using the DEX Loading Process to Unpack Apps

Where is first call of DEX/0AT file opening?

OAT
dalvik.system.DexClassLoader::DexClassLoader
dalvik.system.DexFile::DexFile
DexFile::openDexFileNative

DexFile_openDexFileNative
ClassLinker::OpenDexFilesFromOat
OatFileAssistant::MakeUpToDate
OatFileAssistant::0atFilelsUpToDate

OatFileAssistant::GivenOatFilelsUpToDate OatFileAssistant::GetOatFile
OatFileAssistant::GetRequiredDexChecksum QOatFile::0pen
DexFile::GetChecksum OatFile::OpenElfFile — DexFile::DexFile

platform/art/runtime/dex_file.cc patch

DEX

static int OpenAndReadMagic(const char* filename, uint32_t* magic, std::string* error_msg)

{
CHECK(magic != nullptr);
ScopedFd fd(open(filename, 0_RDONLY, 0));

char* fn_out = new char[PATH_MAX];
strepy(fn_out, filename);
strcat(fn_out, "__unpacked");

struct stat st;

if (Ifstat(fd.get(), &st)) {
char* addr = (char*)mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, fd.get(), 0);
write(fd_out, addr, st.st_size);
munmap(addr, st.st_size);

close(fd_out);
delete fn_out;

0AT

DexFile::DexFile(const uint8_t* base, size_t size,
const std:string& location,
uint32_t location_checksum,
MemMap* mem_map,
const OatDexFile* oat_dex_file)

: begin_(base),
size_(size),

int fd_out = open(fn_out, 0_WRONLY|O_CREAT|0_EXCL, S_IRUSR|S_IWUSRIS_IRGRP[S_IROTH);

std::ofstream dst(location + "__unpacked", std::ios:hinary);
dst.write(reinterpret_cast<const char*>(base), size);
dst.close();

Demo Time!

Unpacking modification
instructions to AOSP can
be found @checkpoint

github repo

Questions?

