
Starting the Avalanche:
Application DoS In Microservice Architectures

Scott Behrens
Jeremy Heffner

Jeremy Heffner

● Senior Security Software
Engineer

● Developing and securing
things for 20+ years

Introductions
Scott Behrens

● Netflix senior application
security engineer

● Breaking and building for
8+ years

● Contributor to a variety
of open source projects
(github.com/sbehrens)

DoS focused on application
layer logic

Photo of a battering ram by Flickr user Patrick Denker; License: https://creativecommons.org/licenses/by/2.0/

http://www.interestingfacts.org/fact/first-example-of-biological-warfare

http://www.interestingfacts.org/fact/first-example-of-biological-warfare
http://www.interestingfacts.org/fact/first-example-of-biological-warfare

How Novel is Application DoS?

https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q1-2017-state-of-the-internet-security-report.pdf

https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q1-2017-state-of-the-internet-security-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q1-2017-state-of-the-internet-security-report.pdf

Microservice Primer: High Level View

Architecture

Client Libraries and API Gateway

Circuit Breakers / Failover

Cache

Microservice Primer: Architecture

Scale

Service independence

Fault isolation

Eliminates stack debt

Distributed system complexity

Deployment complexity

Cascading service failures if
things aren’t set up right

GOOD BAD

Simplified Microservice API Architecture

INTERNET

ZUUL
PROXY

ZUUL
PROXY PROXIES

CORE API

WEBSITE

Middle Tier Service

Middle Tier Service

Middle Tier Service

Middle Tier Service

Backend Tier Service
Backend Tier Service

Backend Tier Service

Backend Tier Service

Backend Tier Service

Backend Tier Service

Backend Tier Service

Backend Tier Service

EDGE Middle Backend

Microservice Primer: API Gateways and Client Libraries
Interface for middle tier
services

Services provide client
libraries to API Gateway

Diagrams provided by microservices.io

Microservice Primer: Circuit Breaker
Helps with handling service failures

How do you know what timeout to
choose?

How long should the breaker be triggered?

Diagrams provided by microservices.io

Microservice Primer: Cache
Speeds up response time

Reduces load on services
fronted by cache

Reduces the number of servers
needed to handle requests

https://github.com/netflix/evcache

https://github.com/netflix/evcache
https://github.com/netflix/evcache

Old school Application DoS
CPU

Mem

Cache

Disk

Network

New School Application DoS
CPU

Mem

Cache

Disk

Network

Queueing

Client Library Timeouts

Healthchecks

Connection Pool

Hardware Operations (HSMs)

New School Application DoS
CPU

Mem

Cache

Disk

Network

Queueing

Client Library Timeouts

Healthchecks

Connection Pool

Hardware Operations (HSMs)

Difference Between Old School and New School App DoS
Old School Application DoS

Often 1 to 1

New School Application DoS

Often 1 to Many

Simple Web Application Architecture

Old School Application DoS Attack

> perl create_many_profiles.pl

POST /create_profile HTTP/1.1
…
profile_name=$counter + “hacker”

300 requests per second

HTTP Timeouts

HTTP Timeouts

https://www.teachprivacy.com/the-funniest-hacker-stock-photos/
https://openclipart.org/image/2400px/svg_to_png/241842/sad_panda.png
http://www.funnyordie.com/lists/f64f7beefd/brent-rambo-approves-of-these-gifs

https://www.teachprivacy.com/the-funniest-hacker-stock-photos/
https://www.teachprivacy.com/the-funniest-hacker-stock-photos/
https://openclipart.org/image/2400px/svg_to_png/241842/sad_panda.png
https://openclipart.org/image/2400px/svg_to_png/241842/sad_panda.png
http://www.funnyordie.com/lists/f64f7beefd/brent-rambo-approves-of-these-gifs
http://www.funnyordie.com/lists/f64f7beefd/brent-rambo-approves-of-these-gifs

ZUUL
PROXY

ZUUL
PROXY PROXIES

CORE API

WEBSITE
Middle Tier Service
Middle Tier Service
Middle Tier Service
Middle Tier Service

Backend Tier Service

Backend Tier Service

Backend Tier Service

Backend Tier Service
 Backend Tier Service
 Backend Tier Service

Backend Tier Service

Backend Tier Service

EDGE Middle Backend

New School Microservice API DoS

> python grizzly.py

POST /recommendations HTTP/1.1
…
{“recommendations”: {“range”:
[0,10000]}}

ZUUL
PROXY

ZUUL
PROXY PROXIES

CORE API

WEBSITE
Middle Tier Service
Middle Tier Service
Middle Tier Service
Middle Tier Service

Backend Tier Service

Backend Tier Service

Backend Tier Service

Backend Tier Service
 Backend Tier Service
 Backend Tier Service

Backend Tier Service

Backend Tier Service

EDGE Middle Backend

New School Microservice API DoS

> python grizzly.py

POST /recommendations HTTP/1.1
…
{“recommendations”: {“range”:
[0,10000]}}

Fallback or

Site Error

Core API making many
client requests

Middle tier services
making many calls to
backend services

Backend service
queues filling up with
expensive requests

Client Timeouts, circuit
breakers triggered,
fallback experience
triggered

Workflow for Identifying Application DoS - Part 1
Identify the most latent service calls

Investigate if latent calls allow for manipulation

Tune payload to fly under WAF/Rate Limiting

Test hypothesis

Scale your test using Cloudy Kraken (orchestrator) and Repulsive Grizzly (attack
framework)

Workflow for Identifying Application DoS - Part 1
Identify the most latent service calls

Investigate if latent calls allow for manipulation

Tune payload to fly under WAF/Rate Limiting

Test hypothesis

Scale your test using Cloudy Kraken (orchestrator) and Repulsive Grizzly (attack
framework)

Identifying Latent Service Calls

Identifying Latent Service Calls

Microservice Application DoS: Attack Patterns

Range

Object Out per Object in

Request Size

All of the Above

Application DoS Technique: Range

Application DoS Technique: Object Out Per Object In

Application DoS Technique: Request Size

Application DoS Technique: All of the Above

<--What about N languages?

<--What about more object fields?

Logical Work Per Request

#
Req

Service
Healthy

Service Impact

S
ervice Im

pact

Rate Limited

Service Auto-Scaling/Healthy

New School Application DoS Attack: Case Study

Making the call more expensive

Workflow for Identifying Application DoS - Part 2
Identify the most latent service calls

Investigate if latent calls allow for range, object out/object in, request size, or other
manipulation

Tune payload to fly under WAF/Rate Limiting while causing the most application
instability

Test hypothesis on a smaller scale using Repulsive Grizzly

Scale your test using Cloudy Kraken

Repulsive Grizzly
Skunkworks application DoS framework

Written in Python3

Eventlet for high concurrency

Uses AWS SNS for logging analysis

Easily configurable

Repulsive Grizzly: Command File

Repulsive Grizzly: Payload and Header Files
Provide payloads in any format you want

Headers are provided as a JSON key/value hash

Use $$AUTH$$ placeholder to tell grizzly where to place tokens

Repulsive Grizzly: Bypass Rate Limiter with Sessions

http://nerdprint.com/wp-content/uploads/2014/09/Dumle-Mountain-Cookies-Advertising2.png

http://nerdprint.com/wp-content/uploads/2014/09/Dumle-Mountain-Cookies-Advertising2.png
http://nerdprint.com/wp-content/uploads/2014/09/Dumle-Mountain-Cookies-Advertising2.png

Repulsive Grizzly: Single Node

https://giphy.com/gifs/dancing-90s-computer-uWv3uPfWOz088

https://giphy.com/gifs/dancing-90s-computer-uWv3uPfWOz088
https://giphy.com/gifs/dancing-90s-computer-uWv3uPfWOz088

Cloudy Kraken Overview

Update Config

Push the latest
configuration file and attack
scripts to S3.

Reset the DynamoDB state.

Build
Environment

Configure the VPCs in each
region

Start up
Attack
Nodes

Launch instances

Collect
data

Wait for data to come
through SNS

Tear-Down

Tear down and reset the
environment in each region

Cloudy Kraken Configuration

S3 Bucket

DynamoDB
Table

Zip File and Configuration

Reset State

Cloudy Kraken: Key AWS Deployment Building Blocks

Region => AWS Geographical Region

VPC => VLAN

ASG => Automatically starts identical nodes

AZ/Subnet => Localized nodes / Subnet

Launch Config => Initial configuration

Region

VPC

AZ/Subnet

AZ/Subnet

Auto-Scaling Group

NodeNodeNodeNodeNodeNode

NodeNodeNodeNodeNodeNode

Cloudy Kraken Deployment phase
VPC

Security Group

Auto Scaling Group

VPC

Security Group

Auto Scaling Group
R

eg
io

n
A

R
eg

io
n

B

Cloudy Kraken Workers
Each worker node is a single EC2 instance

Each worker runs many threads

EC2 gives you access to Enhanced Networking Driver

Minimal overhead with launch config and ASG

Cloudy Kraken Execution phase
On startup, each worker node runs a cloud-init script

Enables ssh access for monitoring and debugging

Downloads and runs main config script

Downloads ZIP file with attack script

Spins up attack worker

Waits for coordinated time to start

Cloudy Kraken Kill-Switch
Script to set the kill switch, and bring it all down

Cloudy Kraken Tear-Down
Terminates all the instances

Removes ASGs and Launch Configs

Removes VPC, Security group, and Instance Profiles

We scaled up, time to run the test!
Tested against prod

Multi-region and
multi-agent

Conducted two 5
minute attacks

Monitored for success

Results of Test

80% Error Rate

$1.71
5 minute outage for a single AWS region

So What Failed?
Expensive API calls could be invoked with non-member cookies

Expensive traffic resulted in many RPCs per request

WAF/Rate Limiter was unable to monitor middle tier RPCs

Missing fallback experience when cache missed

Demo
● Test app
● Launching and scaling attack with Cloudy Kraken

Microservice
Application DoS:

Mitigations

Understand which
microservices impact
customer experience

Microservice
Application DoS:

Mitigations

Rate limiter (WAF)
should monitor
middle tier signals or
cost of request*

Microservice
Application DoS:

Mitigations

Middle tier services
should provide
context on abnormal
behavior

Microservice
Application DoS:

Mitigations

Rate limiter (WAF)
should monitor
volume of cache
misses*

Microservice
Application DoS:

Mitigations

Prioritize
authenticated traffic
over unauthenticated

Microservice
Application DoS:

Mitigations
Configure reasonable
client library timeouts

Microservice
Application DoS:

Mitigations

Trigger fallback
experiences when
cache or lookups fail

Thanks!
https://github.com/netflix-skunkworks/repulsive-grizzly

https://github.com/netflix-skunkworks/cloudy-kraken

@helloarbit

https://github.com/netflix/repulsive-grizzly
https://github.com/netflix/repulsive-grizzly
https://github.com/netflix/cloudy-kraken
https://github.com/netflix/cloudy-kraken

