Starting the Avalanche:

Application DoS In Microservice Architectures

Scott Behrens
Jeremy Heffner

Introductions
Scott Behrens

e Netflix senior application
security engineer

e Breaking and building for
8+ years

e Contributor to a variety
of open source projects

(github.com/sbehrens)

Jeremy Heffner

e Senior Security Software
Engineer

e Developing and securing
things for 20+ years

DoS focused on application
layer logic

Photo of a battering ram by Flickr user Patrick Denker; License: https://creativecommons.org/licenses/by/2.0/

http://www.interestingfacts.org/fact/first-example-of-biological-warfare

http://www.interestingfacts.org/fact/first-example-of-biological-warfare
http://www.interestingfacts.org/fact/first-example-of-biological-warfare

How Novel is Application DoS?

Application
Layer DDoS ——
0.57%

Infrastructure
Layer DDoS

w

e

QO

£ o

<< O

3 8

A o

n e

c o

L =

-

11 (R —
o 99.4

2 3%

o

<

https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q1-2017-state-of-the-internet-security-report.pdf

https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q1-2017-state-of-the-internet-security-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q1-2017-state-of-the-internet-security-report.pdf

Microservice Primer: High Level View
Architecture
Client Libraries and API Gateway

Circuit Breakers / Failover

Cache

Microservice Primer: Architecture

GOOD BAD

Scale Distributed system complexity
Service independence Deployment complexity
Fault isolation Cascading service failures if

_ things aren’t set up right
Eliminates stack debt

Simplified Microservice APl Architecture

Middle Backend

Backend Tier Service

ackend Tier Service

iI

Backend Tier Service
‘ iddle Tier Service ackend Tier Service

INTERNET ¢
N ackend Tier Service

Middle Tier Service

SMiddle Tier Service
Middle Tier Service

ackend Tier Service

CATRTITR

ackend Tier Service

Backend Tier Service
Backend Tier Service

Backend Tier Service

Microservice Primer: APl Gateways and Client Libraries

Single entry point Interface for middle tier
services

REST Product Info

m service
s s . [o __ Services provide client
web application API REST Recommendation

Service libraries to API Gateway

Review
service

Controller

Browser/Native App Il specific APIs

Protocol
translation

Diagrams provided by microservices.io

Microservice Primer: Circuit Breaker

u - Helps with handling service failures

How do you know what timeout to

connection |

siohiers | choose?

| |
|
?m_eo_utl timeout! |

How long should the breaker be triggered?

timeout!

< -—— —
circuit open! |

Diagrams provided by microservices.io

Microservice Primer: Cache

Speeds up response time

Reduces load on services
fronted by cache

Reduces the number of servers
needed to handle requests

https://github.com/netflix/evcache

EVCache App

ea ri

|
I
ed
Write

https://github.com/netflix/evcache
https://github.com/netflix/evcache

Old school Application DoS
CPU

Mem

Cache

Disk

Network

New School Application DoS

CPU Queueing

Mem Client Library Timeouts
Cache Healthchecks

Disk Connection Pool

Network Hardware Operations (HSMs)

New School Application DoS

CPU Queueing

Mem Client Library Timeouts
Cache Healthchecks

Disk Connection Pool

Network Hardware Operations (HSMs)

Difference Between Old School and New School App DoS

Old School Application DoS New School Application DoS

Often1to 1 Often 1 to Many

Simple Web Application Architecture

Web Browser

Web Server

Module Handler (based on file extension or framework configuration)

Web Application Platform

Data Store

Old School Application DoS Attack

300 requests per second —

—>

HTTP Timeouts

[S|

> perl create_many_profiles.pl

POST /create_profile HTTP/1.1

.“ . “ ” https://www.teachprivacy.com/the-funniest-hacker-stock-photos/
profile_name=Scounter + “hacker https://openclipart.org/image/2400px/svq_to_pna/241842/sad_panda.png
http://www.funnyordie.com/lists/f64f7beefd/brent-rambo-approves-of-these-qgifs

https://www.teachprivacy.com/the-funniest-hacker-stock-photos/
https://www.teachprivacy.com/the-funniest-hacker-stock-photos/
https://openclipart.org/image/2400px/svg_to_png/241842/sad_panda.png
https://openclipart.org/image/2400px/svg_to_png/241842/sad_panda.png
http://www.funnyordie.com/lists/f64f7beefd/brent-rambo-approves-of-these-gifs
http://www.funnyordie.com/lists/f64f7beefd/brent-rambo-approves-of-these-gifs

New School Microservice APl DoS
EDGE Middle Backend

Backend Tier Service
)

Middle Tier Service

A

Middle Tier Service
iddle Tier Service

Middle Tier Service

A

> python grizzly.py
POST /recommendations HTTP/1.1

{“recommendations”: {“range”:
[0,10000]}}

New School Microservice APl DoS
EDGE Middle Backend

Backend Tier Service
Backend Tier Service

Middle Tier Service

Backend Tier Service

Backend Tier Service

ackend Tier Service

Middle Tier Service

> python grizzly.py

POST /recommendations HTTP/1.1

(Client Time_outs, circuit Middle tier services Backend service
{"recommendations": {urangen: 1breakerS trlggered, mak|ng many calls to queues fllllng up W|th
[0,10000]}} fallback experience backend services

: expensive requests
triggered

Workflow for ldentifying Application DoS - Part 1

Identify the most latent service calls
Investigate if latent calls allow for manipulation
Tune payload to fly under WAF/Rate Limiting

Test hypothesis

Scale your test using Cloudy Kraken (orchestrator) and Repulsive Grizzly (attack
framework)

Workflow for ldentifying Application DoS - Part 1

Identify the most latent service calls
Investigate if latent calls allow for manipulation

Tune payload to fly under WAF/Rate Limiting

|dentifying Latent Service Calls

[w ﬂ Memory Elements Console Sources Performance Network Application Security Ember Audits React

® © m ¥ View: == = |[|@ Preservelog | Disable cache | [_| Offline No throttling v

5000ms 10000ms 15000ms 20000ms 25000ms

Name Method Status Type

| | browse GET 200 document
|_| pathEvaluator?withSize=true&materialize=truedmodel=harris POST 200 xhr

|_| pathEvaluator?withSize=truedmaterialize=true&model=harris POST 200 xhr

|_| pathEvaluator?withSize=truedmaterialize=true&model=harris POST 200 xhr

| | preflight?batchimages=true&lolomoid=faécacad-b2fa-4bed-9766-008ccb537958_ROOT&fromRow=4&toRow=50... GET 200 xhr

|| pathEvaluator?withSize=true&materialize=true&model=harris POST 200 xhr

|_| pathEvaluator?withSize=true&materialize=true&model=harris POST 200 xhr

|_| login POST 302 text/htmi
| manifest POST 200 xhr

| manifest POST 200 xhr

Initiator

common|bootstrap.|...
common|bootstrap.|...
common|bootstrap.|...
common|bootstrap.|...
common|bootstrap.|...
common|bootstrap.|...
Other
cadmium-playercor...
cadmium-playercor...

35000ms

Service

|dentifying Latent Service Calls

Breakers
Open %

0.0
0.0
0.0
0.0
0.0

0.0

Error %

16

0.0

0.07

0.0

0.0

0.0

Success %

98.4

Failure %

0.0

0.0

0.07

0.0

Short
Circuited %

0.0

0.0

0.0

0.0

0.0

0.0

Timeout %

0.0

0.0

0.0

0.0

0.0

0.0

Cache

Rejection % Responses

Thread Group Isolation Strategy

1.6 THREAD
0.0 THREAD
0.0 THREAD
0.0 THREAD
0.0

0.0

Latency (ms)

EZD 2131.0
2131.0

£ 1290.1
208.0

EZD 957.9
779.7

£ 677.2
320.8

£ 606.5
386.1

EZ3 396.9

Latency (ms)

[0 2624.2
1963.5
20 1343.6
218.0
311351
389.2
311110
1111.0
[0 869.6
219.5
20 834.9
306.4

Microservice Application DoS: Attack Patterns
Range

Object Out per Object in
Request Size

All of the Above

Application DoS Technique: Range

"items": [
["recommendation”, "english", "spanish",

lltol

description”, "title", "artwork"]

recommendation”, "english", "spanish",

lltol N

‘art size", " 342x192°,

: "some token here possibly"

{

{

Application DoS Technique: Object Out Per Object In
.-cgigggiigsions": ["messages", ["contact", "synopsis", "brief",

"customizations": ["messages”, 80017537, 80017536,
80017532, 80011536, 80014535, 80557534,
80017522, 80011526, 80014522, 80557514,
70017822, 70011926, 70014512, 70557524,
60017542, 60011556, 60014542, 60557544,
50017822, 50011726, 50014572, 50557584,
40017222, 40011326, 40014582, 40557514,

Application DoS Technique: Request Size

"items": [

["recommendation”, "english", "spanish",

Throm- s 1,
"tO": 2

}
|

description”, "title"”, "artwork"]

recommendation”, "english", "spanish",

rERO S Ly

"tO": 2
llart—size"' lljpgll]

"some token here possibly”

{

{

Application DoS Technique: All of the Above

"english", "spanish" <--What about N languages?

<--What about more object fields?

"english", "spanish", {

"+ "some token here possibly”

Rate Limited

Service Impact

Service

Service Auto-Scaling/Healthy
Healthy

g&
n
@
<.
Q
®
5
O
)
Q

Logical Work Per Request

New School Application DoS Attack: Case Study

HTTP Status 413 - Maximum Paths Per Rec

uest Exceeded

OTL Status report

Il Maximum Paths Per Request Exceeded

The request entity is larger than the server is willing or able to process.

Making the call more expensive
93,643 bytes | 212 millis

HT’I‘P;‘l.l 509 Gateway Timeout

174,437 bytes | 4,622 millis

Workflow for ldentifying Application DoS - Part 2

Test hypothesis on a smaller scale using Repulsive Grizzly

Scale your test using Cloudy Kraken

Repulsive Grizzly

Skunkworks application DoS framework
Written in Python3

Eventlet for high concurrency

Uses AWS SNS for logging analysis

Easily configurable

Repulsive Grizzly: Gommand File

{

"post_data": "example.json",

“Tttl":-300,

“"threads": 300,

"hostname": "example.netflix.com",

*urls®s- |
"http://app-staging-12345.us-west-2.elb.amazonaws.com/foo=$$AUTHS$S" ,
"http://app-staging-12346.us-west-2.elb.amazonaws.com/foo=$$AUTH$$"

1,

“round_robin_or_one_url_per_agent": "modulus",

"headers": "default",

"include_default_headers": true,

“"start_time": "08:06:00",

"killswitch": "method_name",

"build_identifier": "©5745d1c11d19b49df7c02237a®50d59¢c0c2d3c5",

"use_auth": true,

"auth_store_count": 3,

"auth_store_name": "tokens",

"method": - "POST",

“proxy": false

Repulsive Grizzly: Payload and Header Files

Provide payloads in any format you want
Headers are provided as a JSON key/value hash
Use $$AUTHS$$ placeholder to tell grizzly where to place tokens

{"Connection": "close", "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.11; rv:42.0)
Gecko/20100101 Firefox/42.0", "Accept": "application/json, text/javascript, /%", "
Accept-Language": - "en-US,en;q=0.5", "Accept-Encoding": "gzip, deflate", "Content-Type": "
application/json", "Cookie": "$$AUTH$$"}

|
{"foo": {"bar": [1,10000]}, "auth_token": "$$AUTH$$"}

Repulsive Grizzly: Bypass Rate Limiter with Sessions

http://nerdprint.com/wp-content/uploads/2014/09/Dumle-Mountain-Cookies-Advertising2.png

http://nerdprint.com/wp-content/uploads/2014/09/Dumle-Mountain-Cookies-Advertising2.png
http://nerdprint.com/wp-content/uploads/2014/09/Dumle-Mountain-Cookies-Advertising2.png

Repulsive Grizzly: Single Node

Test is starting

Attack starts at: 12:30:00 in -1225 seconds
Attack Executing!

{"elb": "
Sanity check passed: 200 0K
by 1 g
{"elb": "
{"elb": "
1°elb”s "
{1 el °
{"elb": "
{"elb": "
{ el s "
{'olb"s: %
{"elb": *
{"elb": "*
{"elb"s: "
{"elb": "
Jrothns. "

“"timestamp":

"timestamp":
“timestamp":
“timestamp":
"timestamp":
“"timestamp":
"timestamp":
"timestamp":
"timestamp":
"timestamp":
"timestamp":
“timestamp":
“"timestamp":
“timestamp":
"timestamp":

"2017-06-14

"2017-06-14
"2017-06-14
"2017-06-14
"2017-06-14
"2017-06-14
"2017-06-14
"2017-06-14
"2017-06-14
"2017-06-14
"2017-06-14
"2017-06-14
"2017-06-14
"2017-06-14
"2017-06-14

12:

12:
12:
12:
12:
12:
12
12:
12:
12:
12:
12:
12:
12:
12:

.709759",

.336814",
.341769",
.343918",
.349745",
.352920",
.356737",
.360834",
.364781",
.368494",
.372965",
.376708"
.380755",
.385331",
.388967",

“exception":

“agent":

“agent":

“"agent":
"agent":

“agent":
“agent":
"agent":
“agent":
“agent"”:
“agent”:
“agent":
“agent":
“agent":

.

“"agent":

"

’
’
’
’

’

’

’
’
’
’
’
’

1
1
1
1
1
1
1,
. |
|
1
1
1
1
1

’

“200", "agent": 1}

"status_codes":
"status_codes":
"status_codes":
"status_codes":
"status_codes":
“status_codes":
"status_codes":
"status_codes":
"status_codes":
“status_codes":
"status_codes":
"status_codes":
"status_codes":
"status_codes":

X

SEEE

$484¢8¢

A e ey ey e ey ey ey R ey ey ey

1 143}

: 187, "S04": 4, "S03": 2372}}
': 289, "S03": 848}}

": 174, "S03": ©668}}

": 740}}

“: 7743}

": 788}}

": 60, "S03": 723}}

: 45, "S504": 82, "S03": 540}}
*: 93, "200": 4, "S03": 1043}}
": 4, "S503": 1504}}

": 133031}
: 1, "S03": 1632}}
: 54, "S03": 1542}}

https://giphy.com/gifs/dancing-90s-computer-u\Wv3uPfWOz088

https://giphy.com/gifs/dancing-90s-computer-uWv3uPfWOz088
https://giphy.com/gifs/dancing-90s-computer-uWv3uPfWOz088

Cloudy Kraken Overview

Push the latest Launch instances Tear down and reset the
configuration file and attack environment in each region
scripts to S3.

Reset the DynamoDB state.

Configure the VPCs in each Wait for data to come
region through SNS

Cloudy Kraken Configuration

ile and Conﬂurat'\on

S3 Bucket
Zip Fi

Reset State _—
Table

Cloudy Kraken: Key AWS Deployment Building Blocks

Region

Region => AWS Geographical Region

VPC
VPC => VLAN

AZ/Subnet

Auto-Scaling Group

ASG => Automatically starts identical nodes
N N N¢ N | Node

AZ/Subnet => Localized nodes /| Subnet

AZ/Subnet o " : .
N N NON I Node Launch Config => Initial configuration

Cloudy Kraken Deployment phase

VPC

Security Group

Auto Scaling Group

VPC

Security Group

Auto Scaling Group

Cloudy Kraken Workers

Each worker node is a single EC2 instance
Each worker runs many threads
EC2 gives you access to Enhanced Networking Driver

Minimal overhead with launch config and ASG

Cloudy Kraken Execution phase

On startup, each worker node runs a cloud-init script
Enables ssh access for monitoring and debugging
Downloads and runs main config script
Downloads ZIP file with attack script
Spins up attack worker

Waits for coordinated time to start

Cloudy Kraken Kill-Switch

Script to set the kill switch, and bring it all down

Cloudy Kraken Tear-Down

Terminates all the instances
Removes ASGs and Launch Configs

Removes VPC, Security group, and Instance Profiles

We scaled up, time to run the test!

Tested against prod

Status Codes

20823 503
7396 504

Multi-region and o7 40

multi-agent 2 5

1973 401
1951 400
0

Conducted two 5
minute attacks

Monitored for success

Results of Test

8 O /O I ' I I O I I e al ‘ 11:20 2 :35 11:40 11:45 11:50 11:55 12: 00 12:05 12:10 12:15 12:20 12:25 12:30

[l count200
Max : . 208k in .425
Avg : . 802k 3 . 425
Tot : 112k 5 .000

[l count404
.223m ind . 470m
.118m 2 . 052m
. 408 S . 000

. 058 i A .532m
474 X 165.763m
. 093k 8 70. 000

. 624k Min 0.000
. 370k Last : 0.000
. 905k Cnt 70. 000

Frame: 70m, End: 2016-06-22T12:31-07:00[US/Pacific], Step: 1m
Fetch: 42lms (L: 4.6k, 2.7k, 4.0; D: 277.5k, 189.6k, 280.0k)

S1.71

5 minute outage for a single AWS region

So What Failed?

Expensive API calls could be invoked with non-member cookies
Expensive traffic resulted in many RPCs per request
WAF/Rate Limiter was unable to monitor middle tier RPCs

Missing fallback experience when cache missed

Demo

o Testapp
e Launching and scaling attack with Cloudy Kraken

Microservice Understand which
Applicatiﬂn DoS: microservices impact
Miti gations customer experience

Microservice Rate limiter (WAF)
Application DoS:

should monitor
middle tier signals or

Mitigatiﬂﬂs cost of request™

Microservice Middle tier services
Application DosS:

should provide
context on abnormal

Mitigations behavior

Microservice Rate limiter (WAF)
Applicatiﬂn DoS: should monitor
M|t| gatiﬂns volume of cache

misses*

Microservice Prioritize
Applicatiﬂn DoS: authenticated traffic
Miti gation S over unauthenticated

Microservice
Application DoS:

Configure reasonable
client library timeouts

Mitigations

Microservice Trigger fallback
Applicatiﬂn DoS: experiences when
Miti gations cache or lookups fail

Thanks!

https://github.com/netflix-skunkworks/repulsive-grizzly

https://github.com/netflix-skunkworks/cloudy-kraken

@helloarbit

https://github.com/netflix/repulsive-grizzly
https://github.com/netflix/repulsive-grizzly
https://github.com/netflix/cloudy-kraken
https://github.com/netflix/cloudy-kraken

