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o  Security researcher at Lookout 
o  Lead researcher on Pegasus exploit chain 
o  Focused on advanced exploitation techniques 
o  Fried Apple team co-founder 
o  iOS/tvOS/WatchOS jailbreak author 



July 27-30, 2017  

o  Released in 2015	
o  Apple S1/S2	processor 
o  ARMv7k 32 bit architecture 
o  512 MB RAM 
o  WatchOS 
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What is Apple Watch ? 
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o  Its fun J 
o  Access to sensitive user data 
o  Run tools like radare or frida on a watch 
o  iPhone attack vector 
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Why to pwn a watch? 
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Apple Watch security 
o  Secure boot chain 
o  Mandatory Code Signing  
o  Sandbox 
o  Exploit Mitigations 
o  Secure Enclave Processor (2-nd generation only)  
o  Data Protection 
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Possible attack vectors 

o  Malformed USB descriptor (cable required) 
o  Malformed email, message, photo, etc 
o  Application extension based 
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Attack plan 
o  Leak kernel base 
o  Dump whole kernel 
o  Find gadgets and setup primitives 
o  Disable security restrictions 
o  Run ssh client on a watch 
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Bugs of interest 

o  CVE-2016-4656	- osunserialize bug 
o  CVE-2016-4669	- mach_port register 

o  CVE-2016-7644	- set_dp_control_port 
o  CVE-2017-2370	- voucher extract recipe 
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Leaking kernel slide 
o  CVE-2016-4655	and CVE-2016-4680	

o  Object constructor missing bounds checking 
o  OSNumber object with high number of bits 
o  Object length used to copy value from stack 
o  Kernel stack memory leaked 
o  Can be triggered from an app’s sandbox 
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OSObject * OSUnserializeBinary(const char *buffer, size_t bufferSize,  
      OSString **errorString) { 

uint32_t key, len, wordLen; 
len = (key & kOSSerializeDataMask); 
...  
case kOSSerializeNumber: 
                bufferPos += sizeof(long long); 
                if (bufferPos > bufferSize) break; 
                value = next[1]; 
                value <<= 32; 
                value |= next[0]; 
                o = OSNumber::withNumber(value, len); 
              next += 2; 
                break; 

No number length check 
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bool OSNumber::init(unsigned long long inValue,  
     unsigned int newNumberOfBits) { 

    if (!super::init()) 
        return false; 
      size = newNumberOfBits; 
       value = (inValue & sizeMask); 
       return true; 
} 
 
unsigned int OSNumber::numberOfBytes() const { 

 return (size + 7) / 8;        
} 

No number length check 

Return value is under control 
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kern_return_t is_io_registry_entry_get_property_bytes( io_object_t registry_entry,  
io_name_t property_name, io_struct_inband_t buf, … ) { 
... 
UInt64 offsetBytes;   // stack based buffer 
... 
} else if( (off = OSDynamicCast( OSNumber, obj ))) { 

 offsetBytes = off->unsigned64BitValue(); 
 len = off->numberOfBytes();   
 bytes = &offsetBytes;      

... 
if (bytes) { 

 if( *dataCnt < len) 
     ret = kIOReturnIPCError; 
 else { 

            *dataCnt = len; 

            bcopy( bytes, buf, len );      // copy from stack based buffer  
             

 Will be returned to userland 

   We control this value 

Points to stack based buffer 
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CVE-2016-4656	exploitation 
o  Kernel mode UAF in OSUnserializeBinary 

o  OSString object deallocated 
o  retain() called on deallocated object 
o  Fake object with fake vtable –> code exec 
o  Problem: kernel dump required 
o  Bonus: we can deref any address via fake vtable 
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OSObject * OSUnserializeBinary(const char *buffer, size_t bufferSize, …) { 
 
newCollect = isRef = false; 
... 
case kOSSerializeDictionary: 
       o = newDict = OSDictionary::withCapacity(len); 
       newCollect = (len != 0); 
       break; 
... 
        if (!isRef) 
        { 
          setAtIndex(objs, objsIdx, o); 
            if (!ok) break; 
            objsIdx++; 
        } 
 

  Save object to objs array 
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 if (dict) { 
            if (sym) 
             … 
            else { 
                sym = OSDynamicCast(OSSymbol, o); 
                if (!sym && (str = OSDynamicCast(OSString, o))) { 
                    sym = (OSSymbol *) OSSymbol::withString(str); 

                    o->release(); 
                    o = 0; 
                } 
                ok = (sym != 0); 
            } 
        } 

 
 
case kOSSerializeObject: 
                if (len >= objsIdx) break; 
                o = objsArray[len]; 

                o->retain(); 
                isRef = true; 
                break; 
 

 Object saved to objs array destroyed 

Deallocated object retained 
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o  No WatchOS kernel dumps in public 
o  No keys for WatchOS 2.x kernels 
o  Idea: read kernel as OSString chunks 
o  vtable offset required to fake OSString 

o  vtable stored in __DATA.__const in kernel 

Dumping kernel as OSString 13 
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Getting vtable - __DATA.__const leak 
o  __DATA.__const address is in Mach-O header 
o  Kernel base + 0x224 == __DATA.__const  

o  Deref and branch address via fake vtable 
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Getting vtable - known offset 
o  Get vtable offset from similar XNU build 
o  Known  delta from __DATA.__const start 
o  Tune address with +/- delta 
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Getting vtable - known offset 
o  Get vtable offset from similar XNU build 
o  Known  delta from __DATA.__const start 
o  Tune address with +/- delta 
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Getting vtable – OSString layout 
OSString::~OSString()	

OSObject::getRetainCount()	
OSObject::release(int)	

OSObject::retain()	

OSObject::release()	

vtable	ptr	+	0x8	
retain	count	

flags	
length	

string	ptr	

vtable	ptr	+	0x8	
retain	count	 flags	

length	
string	ptr	

OSString::~OSString()	

OSObject::getRetainCount()	

OSObject::release(int)	

OSObject::retain()	

OSObject::release()	

0x0	
0x4	
0x8	
0xC	

0x10	

0x0	
0x8	
0x10	

0x18	

0x0	
0x4	
0x8	
0xC	
0x10	

0x0	
0x8	
0x10	

0x18	

0x20	

OSString 32 bit 

OSString 64 bit 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 



July 27-30, 2017  

OSString layout 
OSString vtable pointer 

OSObject::retain() offset 
32	
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o  vtable ptr is first 8 bytes of a on object 
o  OSString size is 0x20 (64 bit) 
o  retain() off is vtable start + 0x20 (64 bit) 
o  Next node ptr as deallocated object vtable 
o  Idea - retain() OOB to next node in freelist 
o  If next node is OSString – branch object vtable 

Getting vtable – next free node trick 13 
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kalloc.32 freelist 

Next node pointer 

32	

Freelist head 
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o  Heap spray OSString objects  
o  Make dozen OSDictionaries with OSString 
o  Trigger OSDictionary deallocation 
o  retain() -> deref next free chunk pointer 
o  Free chunk is surrounded by OSStrings 

o  retain() ->	OOB branch to next OSString node 

Getting vtable – next free node trick 13 
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Heap spray and OOB branch to vtable 

Allocated OSString object 

Deallocated OSString object 

Branch out of bounds to next node 
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o  Heap spray OSString objects  
o  Make few OSDictionary with OSString 
o  Trigger OSDictionary deallocation 
o  retain() -> deref next free chunk pointer 
o  Free chunk is surrounded by OSStrings 
o  retain() ->	OOB branch to next OSString node 

Getting vtable – next free node trick 

…	on	32	bits	L	
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Getting vtable – dump over panic 
o  OSString vtable reference in OSUnserialize J 
o  We can deref any address as fake vtable ptr 
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Getting vtable – dump over panic 
o  Crash in OSUnserializeBinaryXML 

o  Get LR register value from panic 
o  Use fake vtable to deref LR value 
o  Get panic from a watch 
o  We just dump 4 bytes of a kernel J 
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Getting vtable – dumping kernel 
o  Use address to leak as vtable_addr - 0x10	
o  We need to tune by retain() offset in vtable 
o  Crash and get panic log 
o  Copy panic from Watch to iPhone -> Mac 
o  Parse panic, grab 4 bytes of a kernel TEXT 
o  Update address with 4 bytes delta and repeat 
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Getting vtable – final steps 

o  Crash in OSUnserializeXML 

o  Leak opcode until ‘BL OSUnserializeBinary’ 
o  Leak OSUnserializeBinary opcodes 
o  Finally get OSString vtable offset 
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Getting vtable – final steps 

OSString vtable offset OSUnserializeBinary address 
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Getting vtable – final steps 
o  5 minutes for recover watch after crash 
o  5 minutes to fetch panic from watch 
o  2 minutes to copy to Mac and parse 
o  No way to automate a process 
o  It takes me two weeks to dump vtable 
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Next step – full kernel dump 
o  Now use fake OSString obj to read kernel 
o  Read data via IORegistryEntryGetProperty 

o  Leak kernel header, calculate kernel size 
o  Dump full kernel to userland by chunks 
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Next step – kernel symbolication 

o  Find and list all kexts 
o  Find sysent and resolve syscalls 
o  Find and resolve mach traps 
o  Resolve IOKit objects vtable 
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Next step – setting up primitives 

o  Scan kernel dump for gadgets 

o  Set up exec primitive 
o  Set up kernel read & write primitives 
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Next step – kernel structs layout 

o  Look for proc_* functions 
o  Restore proc structure layout 
o  Dump memory, check for known values 
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Next step – kernel structs layout 

o  memmem string \ byte pattern 
o  + xref + instruction analysis 
o  Resolve syscalls table, mach traps table 
o  Simple instruction emulation 
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Getting root and sandbox bypass 

o  Patch setreuid (no KPP J) 

o  patch ucred in proc structure in kernel 
o  patch sandbox label value in ucred 
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Getting kernel task 

o  Patch task_for_pid() 

o  Or save kernel sself in task bootstrap port 
o  Read it back via task_get_special_port() 

o  Restore original bootstrap port value 
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Disable codesign checks 
o  Patch _debug to 1 
o  patch _nl_symbol_ptr (got) entries 

o  Patch amfi variables 
 - cs_enforcement_disable 

 - allow_invalid_signatures 
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Remount rootfs 
o  Patch __mac_mount 

o  Change flags in rootfs vnode and mount RW 

o  Patch lwvm is_write_protected check 
o  Patch PE_i_can_has_debugger in lwvm 
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Spawning ssh client 

o  Compile dropbear for ARMv7k	
o  Compile basic tools package for ARMv7k 
o  Problem: More sandbox restrictions 
o  Kill WatchOS specific sandbox operations 
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 ssh connection problem… 

"awdl0/ipv6"	=	"fe80::c837:8аff:fe60:90c2";	
"lo0/ipv4”						=	"127.0.0.1";	
"lo0/ipv6"						=	"fe80::1";	
"utun0/ipv6"	=	"fe80::face:5e30:271e:3cd3";	

o  WatchOS interfaces 
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 Watch <-> iPhone port forwarding 
NSDictionary *comm = @{ !

@"Command" :@"StartForwardingServicePort",                            
@"ForwardedServiceName" :@"com.apple.syslog_relay", !
@"GizmoRemotePortNumber" :[NSNumber numberWithUnsignedShort: pt], !
@"IsServiceLowPriority" :@0,}; !

!
AMDServiceConnectionSendMessage(serviceConnection, !
                               (__bridge CFPropertyListRef)(comm), 

       kCFPropertyListXMLFormat_v1_0); !
!
AMDServiceConnectionReceiveMessage(serviceConnection, &response, 

     (CFPropertyListFormat*)&format); !
!
NSNumber *iphone_port = response[@"CompanionProxyServicePort"]; !

Thanks to Luca J 
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 ssh connection over bluetooth 37 
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Black Hat Sound Bytes 37 
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Watch as a spyware target 
o  Watch have access to SMS, Calls, Health	
o  Photos and emails synced to Watch 
o  Fetch GPS location from the phone 
o  Microphone usage 
o  Apple Pay J 
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Dumping Messages, Contacts, Emails 
o  Just dump from sqlite DB or de-serialize data 

 private/var/mobile/Library/AddressBook/ 
 private/var/mobile/Library/NanoMailKit/ 
 private/var/mobile/Library/SMS/ 

 

o  Hook on fly on device sync\notification 
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Dumping Calendar, Passes, pair info 
o  Just dump from sqlite DB or de-serialize data 

 private/var/mobile/Library/Health/ 
 private/var/mobile/Library/Caches/ 
 private/var/mobile/Library/Application Data/ 

 

o  Hook on fly on device sync\notification 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 



July 27-30, 2017  

Dumping Health, Caches, Photos 
o  Just dump from sqlite DB or de-serialize data 

 private/var/mobile/Library/Health/ 
 private/var/mobile/Library/Caches/ 
 private/var/mobile/Library/Application Data/ 

 

o  Hook on fly on device sync\notification 
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Call recording 
o  AudioToolbox.framework exists but not public 
o  Add observer on CTTelephonyCenter 

o  Catch kCTCallStatusChange in a callback 
o  Hook AudioUnitProcess function 
o  Create file via ExtAudioFileCreateWithURL 

o  Use ExtAudioFileWrite to dump call data 
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