
July 27-30, 2017

1

2

3

4

5

6

7

8

9

10

11

12

Max Bazaliy

Jailbreaking

Apple Watch

July 27-30, 2017

whoami 1

2

3

4

5

6

7

8

9

10

11

12

o  Security researcher at Lookout
o  Lead researcher on Pegasus exploit chain
o  Focused on advanced exploitation techniques
o  Fried Apple team co-founder
o  iOS/tvOS/WatchOS jailbreak author

July 27-30, 2017

o  Released in 2015	
o  Apple S1/S2	processor
o  ARMv7k 32 bit architecture
o  512 MB RAM
o  WatchOS

1

2

3

4

5

6

7

8

9

10

11

12

What is Apple Watch ?

July 27-30, 2017

o  Its fun J
o  Access to sensitive user data
o  Run tools like radare or frida on a watch
o  iPhone attack vector

1

2

3

4

5

6

7

8

9

10

11

12

Why to pwn a watch?

July 27-30, 2017

1

2

3

4

5

6

7

8

9

10

11

12

Apple Watch security
o  Secure boot chain
o  Mandatory Code Signing
o  Sandbox
o  Exploit Mitigations
o  Secure Enclave Processor (2-nd generation only)
o  Data Protection

July 27-30, 2017

1

2

3

4

5

6

7

8

9

10

11

12

Possible attack vectors

o  Malformed USB descriptor (cable required)
o  Malformed email, message, photo, etc
o  Application extension based

July 27-30, 2017

1

2

3

4

5

6

7

8

9

10

11

12

Attack plan
o  Leak kernel base
o  Dump whole kernel
o  Find gadgets and setup primitives
o  Disable security restrictions
o  Run ssh client on a watch

July 27-30, 2017

1

2

3

4

5

6

7

8

9

10

11

12

Bugs of interest

o  CVE-2016-4656	- osunserialize bug
o  CVE-2016-4669	- mach_port register

o  CVE-2016-7644	- set_dp_control_port
o  CVE-2017-2370	- voucher extract recipe

July 27-30, 2017

1

2

3

4

5

6

7

8

9

10

11

12

Leaking kernel slide
o  CVE-2016-4655	and CVE-2016-4680	

o  Object constructor missing bounds checking
o  OSNumber object with high number of bits
o  Object length used to copy value from stack
o  Kernel stack memory leaked
o  Can be triggered from an app’s sandbox

July 27-30, 2017

1

2

3

4

5

6

7

8

9

10

11

12

OSObject * OSUnserializeBinary(const char *buffer, size_t bufferSize,
 OSString **errorString) {

uint32_t key, len, wordLen;
len = (key & kOSSerializeDataMask);
...
case kOSSerializeNumber:
 bufferPos += sizeof(long long);
 if (bufferPos > bufferSize) break;
 value = next[1];
 value <<= 32;
 value |= next[0];
 o = OSNumber::withNumber(value, len);
 next += 2;
 break;

No number length check

July 27-30, 2017

1

2

3

4

5

6

7

8

9

10

11

12

bool OSNumber::init(unsigned long long inValue,
 unsigned int newNumberOfBits) {

 if (!super::init())
 return false;
 size = newNumberOfBits;
 value = (inValue & sizeMask);
 return true;
}

unsigned int OSNumber::numberOfBytes() const {

 return (size + 7) / 8;
}

No number length check

Return value is under control

July 27-30, 2017

1

2

3

4

5

6

7

8

9

10

11

12

kern_return_t is_io_registry_entry_get_property_bytes(io_object_t registry_entry,
io_name_t property_name, io_struct_inband_t buf, …) {
...
UInt64 offsetBytes; // stack based buffer
...
} else if((off = OSDynamicCast(OSNumber, obj))) {

 offsetBytes = off->unsigned64BitValue();
 len = off->numberOfBytes();
 bytes = &offsetBytes;

...
if (bytes) {

 if(*dataCnt < len)
 ret = kIOReturnIPCError;
 else {

 *dataCnt = len;

 bcopy(bytes, buf, len); // copy from stack based buffer

 Will be returned to userland

 We control this value

Points to stack based buffer

July 27-30, 2017

CVE-2016-4656	exploitation
o  Kernel mode UAF in OSUnserializeBinary

o  OSString object deallocated
o  retain() called on deallocated object
o  Fake object with fake vtable –> code exec
o  Problem: kernel dump required
o  Bonus: we can deref any address via fake vtable

13

14

15

16

17

18

19

20

21

22

23

24

July 27-30, 2017

OSObject * OSUnserializeBinary(const char *buffer, size_t bufferSize, …) {

newCollect = isRef = false;
...
case kOSSerializeDictionary:
 o = newDict = OSDictionary::withCapacity(len);
 newCollect = (len != 0);
 break;
...
 if (!isRef)
 {
 setAtIndex(objs, objsIdx, o);
 if (!ok) break;
 objsIdx++;
 }

 Save object to objs array

13

14

15

16

17

18

19

20

21

22

23

24

July 27-30, 2017

 if (dict) {
 if (sym)
 …
 else {
 sym = OSDynamicCast(OSSymbol, o);
 if (!sym && (str = OSDynamicCast(OSString, o))) {
 sym = (OSSymbol *) OSSymbol::withString(str);

 o->release();
 o = 0;
 }
 ok = (sym != 0);
 }
 }

case kOSSerializeObject:
 if (len >= objsIdx) break;
 o = objsArray[len];

 o->retain();
 isRef = true;
 break;

 Object saved to objs array destroyed

Deallocated object retained

13

14

15

16

17

18

19

20

21

22

23

24

July 27-30, 2017

o  No WatchOS kernel dumps in public
o  No keys for WatchOS 2.x kernels
o  Idea: read kernel as OSString chunks
o  vtable offset required to fake OSString

o  vtable stored in __DATA.__const in kernel

Dumping kernel as OSString 13

14

15

16

17

18

19

20

21

22

23

24

July 27-30, 2017

Getting vtable - __DATA.__const leak
o  __DATA.__const address is in Mach-O header
o  Kernel base + 0x224 == __DATA.__const

o  Deref and branch address via fake vtable

13

14

15

16

17

18

19

20

21

22

23

24

July 27-30, 2017

Getting vtable - known offset
o  Get vtable offset from similar XNU build
o  Known delta from __DATA.__const start
o  Tune address with +/- delta

13

14

15

16

17

18

19

20

21

22

23

24

July 27-30, 2017

Getting vtable - known offset
o  Get vtable offset from similar XNU build
o  Known delta from __DATA.__const start
o  Tune address with +/- delta

13

14

15

16

17

18

19

20

21

22

23

24

July 27-30, 2017

Getting vtable – OSString layout
OSString::~OSString()	

OSObject::getRetainCount()	
OSObject::release(int)	

OSObject::retain()	

OSObject::release()	

vtable	ptr	+	0x8	
retain	count	

flags	
length	

string	ptr	

vtable	ptr	+	0x8	
retain	count	 flags	

length	
string	ptr	

OSString::~OSString()	

OSObject::getRetainCount()	

OSObject::release(int)	

OSObject::retain()	

OSObject::release()	

0x0	
0x4	
0x8	
0xC	

0x10	

0x0	
0x8	
0x10	

0x18	

0x0	
0x4	
0x8	
0xC	
0x10	

0x0	
0x8	
0x10	

0x18	

0x20	

OSString 32 bit

OSString 64 bit

13

14

15

16

17

18

19

20

21

22

23

24

July 27-30, 2017

OSString layout
OSString vtable pointer

OSObject::retain() offset
32	

13

14

15

16

17

18

19

20

21

22

23

24

July 27-30, 2017

o  vtable ptr is first 8 bytes of a on object
o  OSString size is 0x20 (64 bit)
o  retain() off is vtable start + 0x20 (64 bit)
o  Next node ptr as deallocated object vtable
o  Idea - retain() OOB to next node in freelist
o  If next node is OSString – branch object vtable

Getting vtable – next free node trick 13

14

15

16

17

18

19

20

21

22

23

24

July 27-30, 2017

kalloc.32 freelist

Next node pointer

32	

Freelist head

13

14

15

16

17

18

19

20

21

22

23

24

July 27-30, 2017

o  Heap spray OSString objects
o  Make dozen OSDictionaries with OSString
o  Trigger OSDictionary deallocation
o  retain() -> deref next free chunk pointer
o  Free chunk is surrounded by OSStrings

o  retain() ->	OOB branch to next OSString node

Getting vtable – next free node trick 13

14

15

16

17

18

19

20

21

22

23

24

July 27-30, 2017

Heap spray and OOB branch to vtable

Allocated OSString object

Deallocated OSString object

Branch out of bounds to next node

25

26

27

28

29

30

31

32

33

34

35

36

July 27-30, 2017

o  Heap spray OSString objects
o  Make few OSDictionary with OSString
o  Trigger OSDictionary deallocation
o  retain() -> deref next free chunk pointer
o  Free chunk is surrounded by OSStrings
o  retain() ->	OOB branch to next OSString node

Getting vtable – next free node trick

…	on	32	bits	L	

25

26

27

28

29

30

31

32

33

34

35

36

July 27-30, 2017

Getting vtable – dump over panic
o  OSString vtable reference in OSUnserialize J
o  We can deref any address as fake vtable ptr

25

26

27

28

29

30

31

32

33

34

35

36

July 27-30, 2017

Getting vtable – dump over panic
o  Crash in OSUnserializeBinaryXML

o  Get LR register value from panic
o  Use fake vtable to deref LR value
o  Get panic from a watch
o  We just dump 4 bytes of a kernel J

25

26

27

28

29

30

31

32

33

34

35

36

July 27-30, 2017

Getting vtable – dumping kernel
o  Use address to leak as vtable_addr - 0x10	
o  We need to tune by retain() offset in vtable
o  Crash and get panic log
o  Copy panic from Watch to iPhone -> Mac
o  Parse panic, grab 4 bytes of a kernel TEXT
o  Update address with 4 bytes delta and repeat

25

26

27

28

29

30

31

32

33

34

35

36

July 27-30, 2017

Getting vtable – final steps

o  Crash in OSUnserializeXML

o  Leak opcode until ‘BL OSUnserializeBinary’
o  Leak OSUnserializeBinary opcodes
o  Finally get OSString vtable offset

25

26

27

28

29

30

31

32

33

34

35

36

July 27-30, 2017

Getting vtable – final steps

OSString vtable offset OSUnserializeBinary address

25

26

27

28

29

30

31

32

33

34

35

36

July 27-30, 2017

Getting vtable – final steps
o  5 minutes for recover watch after crash
o  5 minutes to fetch panic from watch
o  2 minutes to copy to Mac and parse
o  No way to automate a process
o  It takes me two weeks to dump vtable

25

26

27

28

29

30

31

32

33

34

35

36

July 27-30, 2017

Next step – full kernel dump
o  Now use fake OSString obj to read kernel
o  Read data via IORegistryEntryGetProperty

o  Leak kernel header, calculate kernel size
o  Dump full kernel to userland by chunks

25

26

27

28

29

30

31

32

33

34

35

36

July 27-30, 2017

Next step – kernel symbolication

o  Find and list all kexts
o  Find sysent and resolve syscalls
o  Find and resolve mach traps
o  Resolve IOKit objects vtable

25

26

27

28

29

30

31

32

33

34

35

36

July 27-30, 2017

Next step – setting up primitives

o  Scan kernel dump for gadgets

o  Set up exec primitive
o  Set up kernel read & write primitives

25

26

27

28

29

30

31

32

33

34

35

36

July 27-30, 2017

Next step – kernel structs layout

o  Look for proc_* functions
o  Restore proc structure layout
o  Dump memory, check for known values

25

26

27

28

29

30

31

32

33

34

35

36

July 27-30, 2017

Next step – kernel structs layout

o  memmem string \ byte pattern
o  + xref + instruction analysis
o  Resolve syscalls table, mach traps table
o  Simple instruction emulation

37

38

39

40

41

42

43

44

45

46

47

48

July 27-30, 2017

Getting root and sandbox bypass

o  Patch setreuid (no KPP J)

o  patch ucred in proc structure in kernel
o  patch sandbox label value in ucred

37

38

39

40

41

42

43

44

45

46

47

48

July 27-30, 2017

Getting kernel task

o  Patch task_for_pid()

o  Or save kernel sself in task bootstrap port
o  Read it back via task_get_special_port()

o  Restore original bootstrap port value

37

38

39

40

41

42

43

44

45

46

47

48

July 27-30, 2017

Disable codesign checks
o  Patch _debug to 1
o  patch _nl_symbol_ptr (got) entries

o  Patch amfi variables
 - cs_enforcement_disable

 - allow_invalid_signatures

37

38

39

40

41

42

43

44

45

46

47

48

July 27-30, 2017

Remount rootfs
o  Patch __mac_mount

o  Change flags in rootfs vnode and mount RW

o  Patch lwvm is_write_protected check
o  Patch PE_i_can_has_debugger in lwvm

37

38

39

40

41

42

43

44

45

46

47

48

July 27-30, 2017

Spawning ssh client

o  Compile dropbear for ARMv7k	
o  Compile basic tools package for ARMv7k
o  Problem: More sandbox restrictions
o  Kill WatchOS specific sandbox operations

37

38

39

40

41

42

43

44

45

46

47

48

July 27-30, 2017

 ssh connection problem…

"awdl0/ipv6"	=	"fe80::c837:8аff:fe60:90c2";	
"lo0/ipv4”						=	"127.0.0.1";	
"lo0/ipv6"						=	"fe80::1";	
"utun0/ipv6"	=	"fe80::face:5e30:271e:3cd3";	

o  WatchOS interfaces

37

38

39

40

41

42

43

44

45

46

47

48

July 27-30, 2017

 Watch <-> iPhone port forwarding
NSDictionary *comm = @{ !

@"Command" :@"StartForwardingServicePort",
@"ForwardedServiceName" :@"com.apple.syslog_relay", !
@"GizmoRemotePortNumber" :[NSNumber numberWithUnsignedShort: pt], !
@"IsServiceLowPriority" :@0,}; !

!
AMDServiceConnectionSendMessage(serviceConnection, !
 (__bridge CFPropertyListRef)(comm),

 kCFPropertyListXMLFormat_v1_0); !
!
AMDServiceConnectionReceiveMessage(serviceConnection, &response,

 (CFPropertyListFormat*)&format); !
!
NSNumber *iphone_port = response[@"CompanionProxyServicePort"]; !

Thanks to Luca J

37

38

39

40

41

42

43

44

45

46

47

48

July 27-30, 2017

 ssh connection over bluetooth 37

38

39

40

41

42

43

44

45

46

47

48

July 27-30, 2017

Black Hat Sound Bytes 37

38

39

40

41

42

43

44

45

46

47

48

July 27-30, 2017

Watch as a spyware target
o  Watch have access to SMS, Calls, Health	
o  Photos and emails synced to Watch
o  Fetch GPS location from the phone
o  Microphone usage
o  Apple Pay J

37

38

39

40

41

42

43

44

45

46

47

48

July 27-30, 2017

Dumping Messages, Contacts, Emails
o  Just dump from sqlite DB or de-serialize data

 private/var/mobile/Library/AddressBook/
 private/var/mobile/Library/NanoMailKit/
 private/var/mobile/Library/SMS/

o  Hook on fly on device sync\notification

37

38

39

40

41

42

43

44

45

46

47

48

July 27-30, 2017

Dumping Calendar, Passes, pair info
o  Just dump from sqlite DB or de-serialize data

 private/var/mobile/Library/Health/
 private/var/mobile/Library/Caches/
 private/var/mobile/Library/Application Data/

o  Hook on fly on device sync\notification

49

50

51

52

53

54

55

56

57

58

59

60

July 27-30, 2017

Dumping Health, Caches, Photos
o  Just dump from sqlite DB or de-serialize data

 private/var/mobile/Library/Health/
 private/var/mobile/Library/Caches/
 private/var/mobile/Library/Application Data/

o  Hook on fly on device sync\notification

49

50

51

52

53

54

55

56

57

58

59

60

July 27-30, 2017

Call recording
o  AudioToolbox.framework exists but not public
o  Add observer on CTTelephonyCenter

o  Catch kCTCallStatusChange in a callback
o  Hook AudioUnitProcess function
o  Create file via ExtAudioFileCreateWithURL

o  Use ExtAudioFileWrite to dump call data

49

50

51

52

53

54

55

56

57

58

59

60

July 27-30, 2017

References

o  Stefan Esser - iOS 10 - Kernel Heap Revisited
o  Luca Todesco - com.apple.companion_proxy client
o  Lookout - Technical Analysis of the Pegasus Exploits on iOS
o  Siguza - tfp0 powered by Pegasus

49

50

51

52

53

54

55

56

57

58

59

60

July 27-30, 2017

@mbazaliy

49

50

51

52

53

54

55

56

57

58

59

60

