Il A

ANN‘G

v

smart Contracts

kkkkkkkkkkkkkk

ethereum Is not bitcoin

“The key component
Is this idea of a
Turing-complete
blockchain”

--Vitalik Buterin

smart contracts

* Business logic
programs

« Semi autonomous

 Move value,
enforce
agreements

* Creativity the limit

literally a billion reasons

Stephan Tual (Follow)
Slock.it Founder, Blockchain and Smart Contract Expert, Former CCO Ethereum
Jun 12 . 3 min read

No DAO funds at risk following the
Ethereum smart contract ‘recursive call’
bug discovery

Our team is blessed to have Dr. Christian Reitwielner, Father of Solidity, as its
Advisor. During the early development of the DAO Framework 1.1 and thanks

to his guidance we were made aware of a generic vulnerability common to all
Ethereum smart contracts. We promptly circumvented this so-called
“recursive call vulnerability” or “race to empty” from the DAO Framework 1.1

as can be seen on line 580:

(WE4R}AD

A $50 Million Hack Just Showed That the DAO Was All Too Human

A $00 MILLION HACR JUST
SHOWED THAT THE DAO WAS
ALL TOO HUMAN

caveats

* No zero days
* No customer code
* Yes, a methodology

* No, | doubt smart contracts
will get that smart

solidity

 Language of choice
 High level, compiles to bytecode
« Similarities to JavaScript and C

e Supports:
* libraries
* Inheritance
 user-defined types
« assembly inline

dev tools

puzzle.sol — ~/Google Drive/presentations/Defcon/backup — Atom = RE x]

File Edit ¥ ction Find Packages Help

- .sol files > bytecode > blockchain o s

Javascript ¥ Backend ethereum node

« Auditing .sol easier with
highlighting B
« Atom my fave, with plugins
 language-ethereum
 etheratom

e Remix—browser based

locked = true;

ackup/puzzle.so

solgraph

contract MyContract {

uint bhalance;

function MyContract{) {
Mint(1000000);

1
function Mint{uint amount) internal { Mint UNTRUSTED
balance = amount;
b
Legend:

function withdraw() {

msg. sender. send(balance) ; Black Public f i
Aack. Fupliic tunction

1

, _ Gray. Internal function
function GetBalance() constant returns{uint) {

return balance;

Red: Send to external address

1

3 Blue: Constant function

Ethereum
State

M 4

INFO:
INFO:
INFO:
INFO:
INFO
INFO:
INFO:
INFO

EXPLORER

CORE

7

ANALYSIS

VALIDATOR |!

2| Visualizer

Z3 Bit-Vector Solver

root@f962F954fFab1: /oyente

root@f962f954fab1: /oyente# python oyente.py -s defcon.sol
root:Contract defcon.sol:greeter:
symExec:Running, please wait...

symExec:

symExec:

:symExec:

symExec:
symExec:

:symExec:

Results
CallStack Attack:
Concurrency Bug:
Time Dependency:
Reentrancy bug exists:
Analysis Completed

root@f962f954fabl: /oyente#

Symbolic execution tool

Works with EVM byte
code or .sol files

Detects 4* vulns
Low false positive rate

basic methodology

* Interview devs

 Load .sol file, preferably with highlighting
* Try compiling

* Dissect code flow—optional solgraph

« Run oyente (cross fingers)

» Manually verify 3/4 vuln yay/nays

* Proceed to manually check for following A
vulns...

reentrancy
ontract ReeEntrancy

mapping (address == ulnt) private expendableTokens;

function stealTokens() public {

uint amountTolLose = expendableTokens[msc
if [![mgg.gender.call.value[amountToLoseJLJJJ
expendableTokens[msg.sender] = 0;

leave off the first “re” for savings

contract Entrancy {
mgppimq (address => uint) priwate expendableTokens;

function stealTokens() public {

uint amountTolLose = expendableTokens[msg.sender];

expendableTokens[msg.sender] = 0;
it (!{msg.sender.call.value(amountToLose)()))

unchecked send in king of the ether

C 0O ‘ & GitHub, Inc. [US] | https://github.com kieranelby KingOfTheEther Throne/blob/v0.4.0/conty

117 uint compensation = wvaluePaid - wizardCommission;

118

119 if (currentMonarch.etherAddress = wizardAddress) {

120 currentMonarch.etheraAddress.send{compensation);

121 1 else {

122 /¢ when the throne is vacant, the fee accumulates for the wizard.
12 3

unchecked send

if (kingOfLosingDone
monarch.send{500) ;

if (kingOfLosingDone && !({ compensationSent)) 1
1t (monarch.send(500))

compensationsSent = True;
else throw;

gas limits

LAST BLOCK

9sag

e
()

BEST BLOCK UNCLES

‘;D_ ACTIVE NODES GAS PRICE GAS LIMIT

BLOCK TIME DIFFICULTY BLOCK PROPAGATION

UNCLE COUNT TRANSACTICNS GAS SPENDING

ATTENTION!

645 ms 100%

() bitwest 4-linux-gnu/fruste
) chfa table-10a45cbS/linux-amd64/g 3 176 ms 100%

withdraw don't send

contract SendContract {
address public riches
uint public mostSent;

function SendContract() payable {
richest = msq.sender;
mostSent = msg.value;

function becomeRichest() able returns (bool) {
if (msg.value > mostSent) {

ansfer(msg.value);

return false;

withdrawn not sent

contract WithdrawalContract { function becomeRichest() payable returns (bool) {
address public richest; if (msg.value > mostSent) {
uint public mostSent; pendingwWithdrawals[richest] += msg.value;

richest = msg.sender;

mapping (address == uint) pendingwithdrawals; mostSent = msg.value;

return true;

function WithdrawalContract() payable {

return false;

richest = msg.sender;
]T[OL:‘T_-P-_:}'? rlt = Wl%q Y ':_j—]_]_J,? :

function withdraw() {
uint amount = pendingwithdrawals[msg.sender];
pendingwWithdrawals[msg.sender] = 0;

msg.sender.transfer (amount);

encryption

transaction-ordering dependence

contract Puzzleq
address public owner;
hool public locked;
uint public reward;
bytes32 public diff;
bytes public solution;

function Puzzle(){
owner = msg.sender;

reward = msqg.value;

lLocked = false;

diff = bytes32{11111);

function() {

it (msqg.sender == owner){

if [

lLocked) throw;

owner.send(reward) ;

reward = msq.value;

else

if |
if
if

msg.data. Llength
(Locked) throw;
(sha256(msg.data) < diff){

sq.sender.send(reward) ;

solution = msg.data;

lLocked = true;

call-stack depth limit

N

root@F962f954Fab1: foyente

root@f962f954fabl: /oyente# python oyente.py -s defcon.sol
INFO:root:Contract defcon.sol:greeter:

INFO:symExec:Running, please wait...
INFO:SyMExeC: —+ + + + + 1 1 1 1 1 ReSU1tS —+—+++ + + + 1 1 1
INFO:symExec: Callstack Attack: False
INFO:symEXxec: Concurrency Bug: False

INFO:symExec: Time Dependency:
INFO: symExec: Reentrancy bug exists: ‘ Ethereum & Following JI®
@ethereumproject

INFO:symExec: ====== Analysis Completed
root@f962f954fab1l: /oyente# _ _

Announcement of imminent hard fork for
EIP150 gas cost changes:

Announcement of imminent hard fork for EIP150 gas cost...

During the last couple of weeks, the Ethereurn network has been
| the target of a sustained attack. The attacker(s) have heen very
crafty in locating vulnerabilities in the client implementations as. ..

blog.ethereum.org

228 PM - 13 Oct 2016

variable or function ambiguity

Player[] public persons;

uint public payoutCursor Id
uint public balance = 0Q;

address public owner;
uint public payoutCursor Id=0;
while (balance = persons[payoutCursor Id].deposit / 100 * 115) {

uint MultipliedPayout = persons[payoutCursor Id].deposit / 100 * 115;
persons[payoutCursor_Id].etherAddress.send(MultipliedPayout);

halance -= MultipliedPayout;

payoutCursor Id ++;

odds and ends

+ Input validation — require(condition) i SRR RS
. se++) { 0 == ; (afcl, b) 88 b.push(ale

* Timestamp dependence s e U 4 \::zi‘ﬁ’;’s,;l?;gf"%;‘ie"

. . - []1, a = ©;a < im, «F 1 Z : usi_a:r

* Business logic flaws s o AL s

< b & a.splicy, wword(a, void 0);

. . . . -1 < b &8 & b } function repl

 Separating public/private data) Function s\ P < - o d - oid

nction czy_juz_.< A%

ion indexOf_keywor ' rox . = -1, d = 0;d ¢
break;) nction dynamicSort(a
return function(ct zurn(c[a] < d[a] ? -1
c) { a += ""; b (@ >= b.length) {
: b. length,,) il »index0f(b, f), @ <=) {
i Jutton™) .click(function() {
= Math.min(a,Prarselnt(h().unique)); lim

get involved

§

X
'y

ll';

mamy

”I””I:;umll

v Ii720727 74
T 7727227279
([

y 4
V 4

71717
y 4
VY 7 4

'/
17

Y v 7 7}
L il

dox me ... or just keep In touch

@konstanthacker

konstantinos.karagiannis@bt.com

