JOE ROZNER | @JROZNER

WIPING OUT CSRF

I1'S 2017

WHAI IS CSRF?

WHERE DOES CSRF
COME FROM?

LET'S TALK HTTP

SAFE VS. UNSAFE

SAFE VS. UNSAFE

» Safe

» GET

» HEAD

» OPTIONS
» Unsafe

» PUT

» POST

» DELETE

LET'S TALK COORIES

10

COOKIES

» Cookies typically used to specity session identifier for server

» Users depend on user agents to correctly control access to cookies

» User agents only but always send cookies with matching domain to hosts
» This is done regardless of matching origin

» Cookies are user agent global (work cross tab)

SESSION=2982zt09hf012th2; Domain=example.com;
Secure; HttpOnly

http://example.com

LET'S TALK XSS

13

XSS

» Attackers use XSS to inject CSRF payloads into the DOM

» With sufficient XSS all counter measures can be bypassed

HOW DOES CSRF
WORK?

15

FORM BASED

4

4

Normal HTML form that a victim is forced to submit

Either genuinely supplied or attacker supplied (via XSS)

Typically performed with JavaScript via XSS or attacker controlled page
Good option for bypassing same origin without CORS

Good option where safe verbs are used correctly

Usetul for phishing links as long as form click is fast

<html>
<head>
</head>
<body>
<form action="http://bank.lol/transfer" method="POST">

<input type=''hidden" name="account"'" value="12345" />

<input type="hidden'" name="amount" value='""100000000" />

<input type="submit">Submit</1inpukt>
</form>
</body>
<script>document.querySelector('form').submit();</scripkt>

</html>

17

AHR

» Typically comes from an XSS payload
» Limited to the origin unless CORS is enabled
» No page reload required

» More difficult for victim to detect

<script>
var xhr = new XM
xhr.open ('POST',

xhr.onreadystatechange=:

P

] (xhr.readyS

HttpRequest () ;

'"/transfer',

// request made

}
bs
xhr.send ('accoun
</script>

true) ;
~unction () {
—ate 4) A
c=12345&amount=1000000") ;

19

RESOURCE INCLUSION

4

4

4

Doesn’t depend on XSS or attacker supplied pages

Requires an attacker to have control over resources on the page
Depends on using safe verbs unsafely

Limited to GET requests

Possible with any HTML tags for remote resources

» img, audio, video, object, etc.

</1mg>

21

CURRENT SOLUTIONS

» Using safe verbs correctly
» Verifying origin

» Synchronizer/crypto tokens

DISCLAIMER

23

WHY?

» Inability to modify the application
» Bulk support across many applications

» Providing protection to customers as a service

24

WHAT ARE WE LOOKING FOR?

» Easily added to apps without CSRF protections present

» Works across browsers
» Can work for xhr, forms, and resources
» Minimal performance impact (cpu, memory, network)

» No additional requests needed (updating tokens)

25

CORRECT SAFE VERB USE

4

4

4

4

If you're changing state don't respond to safe methods

Utilize mature and well designed frameworks and routers to help
Be specific with your verbs and paths

Not easy to fix after the fact but makes it much easier to solve

If it's not an option there are work arounds

VERIFYING REFERER/
ORIGIN

27

REFERER/ORIGIN OVERVIEW

» Check origin/referer in request against current address

4

4

4

Not strictly required but adds some additional protection layers
Probably what you want if you're dependent on CORS

Possibly sufficient with safe methods used correctly

Not fool proof because of header conditions

For CORS read https://mixmax.com/blog/modern-csrf

https://mixmax.com/blog/modern-csrf

GET /transfer HITP/1.1

Host: bank.lol

User—Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_12_3)

Referer: http://shady.attacker/csrf-ftorm.html

http://shady.attacker/csrf-form.html

GET

/transfer HTTP/1.

Host: bank.lol

Use

~—Agent: Mozilla/5.0 (Macintosh;

X—-Requested-With: XMLHttpRequest

Origin: shady.attacker:80

Intel Mac 0S X 10 12 _3)

Referer: http://shady.attacker/csrf-torm.html

http://shady.attacker/csrf-form.html

URL url = null;

String originHeader = request.getHeader("Origin');

[~

1f CoriginHeader != null) {
url = new URL(CoriginHeader);
} else A

String refererHeader = request.getHeader('"Referer');

® r~

1 (refererHeader !'= null) |

url = new URLCrefererHeader);

cring origin = url.getAuthority();

cring host = request.getHeader(''Host");

~

Fe) W <

Corigin == null || origin.equalsIgnoreCase(Chost)) {
return true;

}

return false;

32

TOKEN OVERVIEW

» Come in two types: synchronizer and crypto

» Designed to make each request unique and tie it to a specific user and action
» Required for all state changing actions

» Traditionally only used for logged in users but can be used unauthenticated

» Additional benetits such as stopping replays

33

COMPOSITION

» Essentially composed of three components:
» Random Value
» User ID
» Expiration

» Authenticity Verification

» If one is missing security of tokens is severely compromised

GET/ GET/HTTP/1.1
- Host: bank.lol
Response

A
HTTP/1.1 200 OK

Set-Cookie: token=1234567890abcdef

POST /search

T ——

Response

POST /search

Host: bank.lol
Cookies: token=1234567890abcdef

HTTP/1.1 200 OK
User bank.lol Set-Cookie: token=123abc

35

CRYPTO VS SYNCHRONIZER

» Crypto requires no server side storage or deployment changes
» Synchronizer tokens are just random data
» Basically never use crypto tokens

» We're going to introduce a hybrid solution that provides the best of both
worlds (mostly)

36

GENERATION

String generateToken (1nt userlId, 1nt key) {
byte[l6] data = random/()
explres = time () + 3600
raw = hex(data) + "-" + userId + "-" 4+ expires
signature = hmac(shaz256, raw, key)

return raw + "-" 4+ signature

VALIDATION

bool validateToken (token, user) {
parts = token.split("-")

str = parts[0] + "-" + parts[l] + "-" + parts[Z]
generated = hmac (shaz256, str, key)
1f !constantCompare (generated, parts[3]) {

return false

J

if parts[2] < time ()
return false

J

1f parts[l] !'= user {
return false

J

return true

38

GIVING THE USER AGENT TOKENS

1.
2.
3.

Intercept response on the way out after processing
If token is validated for request or doesn’t exist generate one

If generated create cookie and add to response

SENDING TOKENS BACK

40

FORMS

1. Attach an event listener to the document for “click” and delegate
2. Walk up the DOM to the form
3. Create new element and append to form

4. Return and allow browser to do it’s thing

var target = evt.target;

while (Cktarget !== null) {
1f Ctarget.nodeName === 'A' || target.nodeName === "INPUT' || target.nodeName === 'BUTTON"') A
break;
}

target = target.parentNode;

// We didn't find any of the delegates, bail out
1f Ctarget === null) A

return;

// IF 1t's an 1nput element make sure 1it's of type submit

var type = target.getAttribute(C'type');

1f (Ctarget.nodeName === "INPUT' && (type === null || 'type.match(/"submit$/1))) A
return;

}

// Walk up the DOM to find the form

var form;
for (Cvar node = target; node !== null; node = node.parentNode) {
1f Cnode.nodeName === 'FORM') A
form = node;
break;
}
}
1f Cform === undefined) {
return;

var token = form.querySelector('1input[name="csrf_token"]');

var tokenValue = getCookieValue('CSRF-TOKEN');

1f Ckoken == undefined && token !'== null) A
1f Ctoken.value !== tokenValue) {
token.value = tokenValue;
}
return;
}
var newloken = document.createElement('input');
newloken.setAttribute('type', 'hidden');
newloken.setAttribute('name', 'csrf_token');
newloken.setAttribute('value', tokenValue);

Form.appendChildCnewToken);

L4

AHR

1. Save reference to XMLHttpRequest.prototype.send
2. Overwrite XMLHttpRequest.prototype.send with new function
3. Retrieve and append token from cookie into request header

4. Call original send method

XMLHEEtpRequest .prototype._send = XMLHttpRequest.prototype.send;

XMLHEEpRequest .prototype.send = function() A
1f (!this.isRequestHeaderSet('X-Requested-With')) A

this.setRequestHeader(' X-Requested-With', 'XMLHEtpRequeskt');
}
var tokenValue = getCookieValue(C'CSRF-TOKEN");
1f CtokenValue !== null) A
this.setRequestHeader(' X-CSRF-Header ', tokenValue);
}
this._send.apply(this, arguments);

};

46

BROWSER SUPPORT

Browser Supported
IE 8+

Edge Yes
Firefox 6+
Chrome Yes

Safari 4+

Opera 11.6+

iOS Safari 3+
Android 2.3+

IHE FUTURE

48

SAMESITE COOKIES

» Extension to browser cookies

» Largely replace the need for synchronizer tokens

» Correct use of safe methods is still important

» Fully client side implemented (no sever side component except cookie gen)

» Stops cookies from being sent with requests originating from a different origin

GET/HTTP/1.1

GET/ Host: bank.lol
—————————————

Response
—_— HTTP/1.1 200 OK
GET /image1 Set-Cookie: session=1234567890abcdef
—————)
GET /image2 GET /image1
> Host: bank.lol
GET /image3 Cookies: session=12345678%0abcdef
EEEEEEEE————8SSSS.N
GET /image2
Host: bank.lol

User bank.lol
Cookies: session=1234567890abcdef

GET/

—>
GET/HTTP/1.1
Response
) Host: shady.lol
GET /transfer
R R HTTP/1.1 200 OK

GET /image
Host: bank.lol
Cookies: session=1234567890abcdef

User shady.lol bank.lol

GET/HTTP/1.1

Host: bank.lol

HTTP/1.1 200 OK
Set-Cookie: session=1234567890abcdef;: SameSite=Lax

SIRICT V3. LAX

53

STRICT VS LAX

» Strict enforces for safe methods while Lax does not
» Strict can break for initial page load if cookies are expected present
» You can fix with some creative redirect magic

» Lax is probably sufficient in most cases

HTTPS://TOOLS.IETF.ORG/HTML/DRAFT-IETF-HTTPBIS-COOKIE-SAME-SITE-00

https://tools.ietf.org/html/draft-ietf-httpbis-cookie-same-site-00

54

BROWSER SUPPORT

Browser Supported
|= X

Edge X

Firefox X

Chrome 55+

Safari X

Opera 43+

iOS Safari X

Android Chrome 56

http://caniuse.com/#feat=same-site-cookie-attribute

http://caniuse.com/#feat=same-site-cookie-attribute

IMPLEMENTATION

1.
2.
3.

4.

Intercept responses on the way out
Parse Set-Cookie headers
ldentitfy if cookie should have the SameSite attribute

ldentify if SameSite attribute is present

. Add SameSite attribute if not present

56

CONCLUSION

» We have current flexible solutions for CSRF that solve most cases
» These can be deployed retroactively to apps without support

» If you're building new apps use framework support

» We need to get users off old broken browsers

» SameSite looks like a possible end in many cases but too soon to tell

