

DNS - Devious Name Services

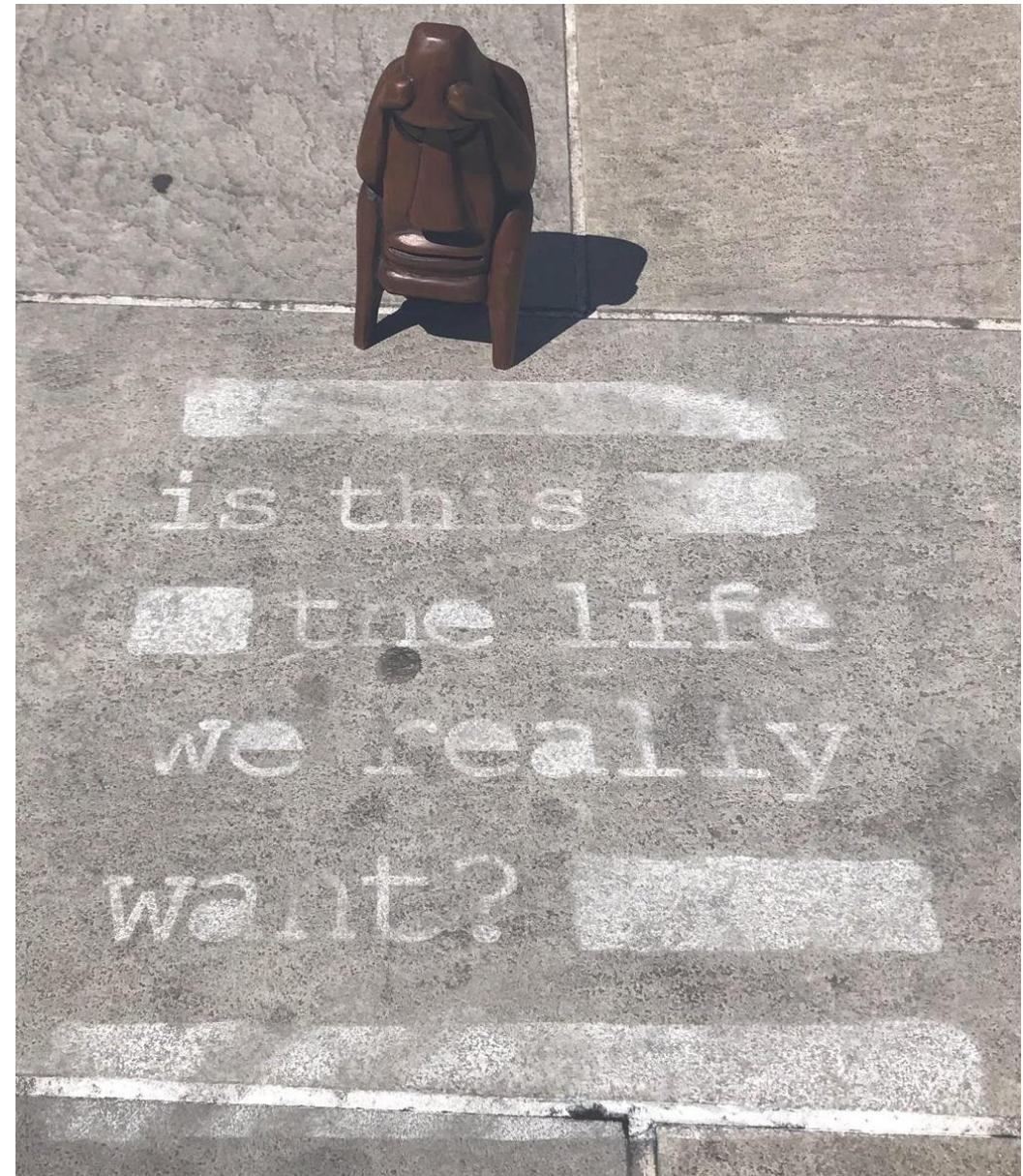
Destroying Privacy &
Anonymity Without Your
Consent

Jim Nitterauer
Senior Security Specialist

Disclaimer

Information disclosed in this presentation is intended to help improve your security & privacy posture and should not be used for unethical purposes

The concepts presented are in no way meant to imply original research on my part or on the part of my employer


Information presented here is gathered from public and private sources with proper references and credit provided where applicable

The views expressed in this talk are not necessarily the views of my employer

Why Am I here?

Review DNS, EDNS0 extensions and Option Codes

Discuss the Rationale for EDNS0 Use

Examine EDNS Client Subnet (ECS)

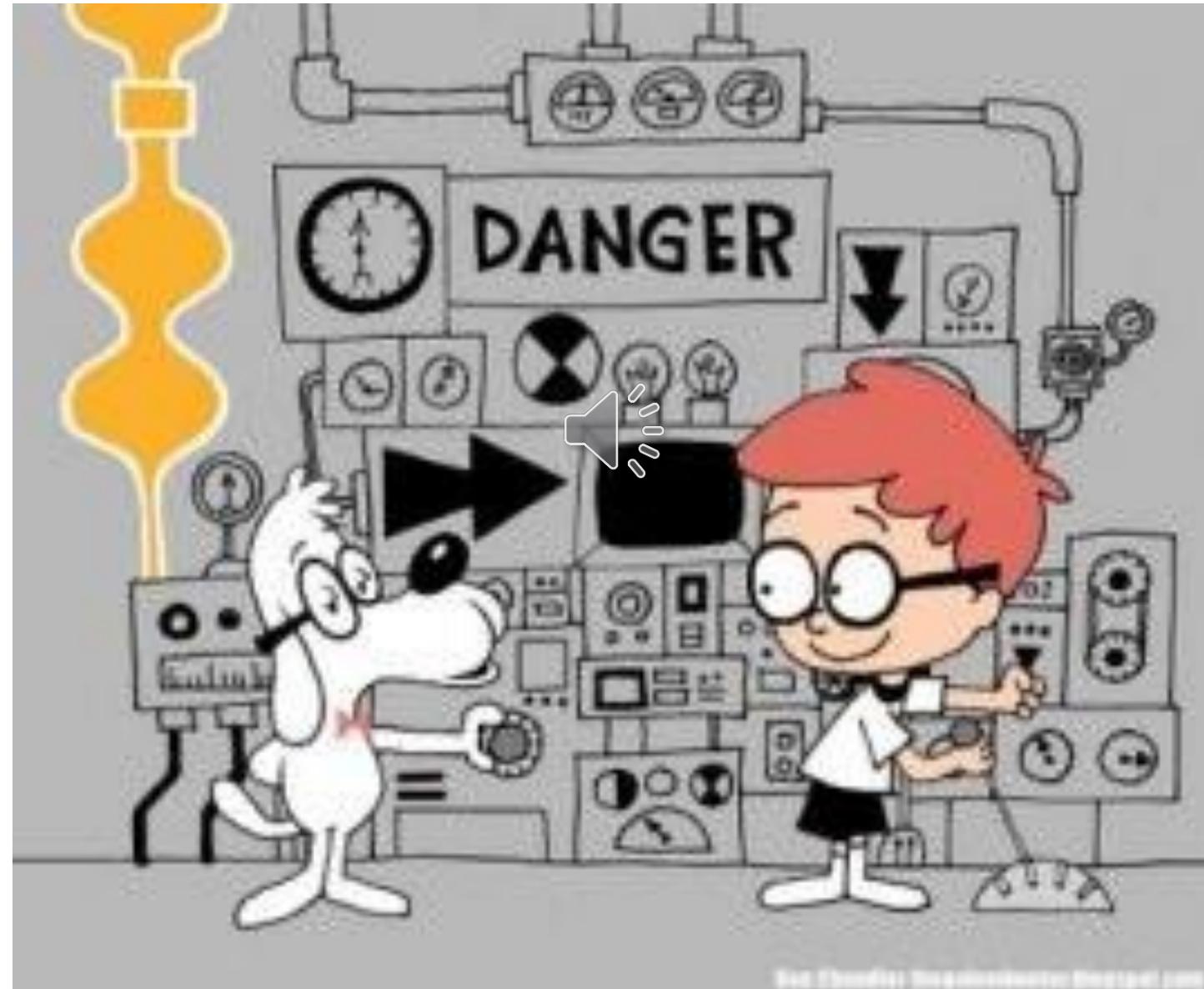
Review DNS Resolver Support

Examine Tools & Procedures for Testing

Discuss Privacy Implications of EDNS0 OPT Codes

Discuss Potential for Abuse

Questions & answers


Understand the basics about EDNS OPT RRs

Understand the potential threat to your privacy

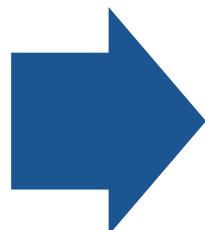
Have direction for detecting the use of EDNS OPTs

Be able to better insure your online privacy

Brief History of DNS

Introduced in 1983 by Paul Mockapetris & Jon Postel

Information Sciences Institute – USC

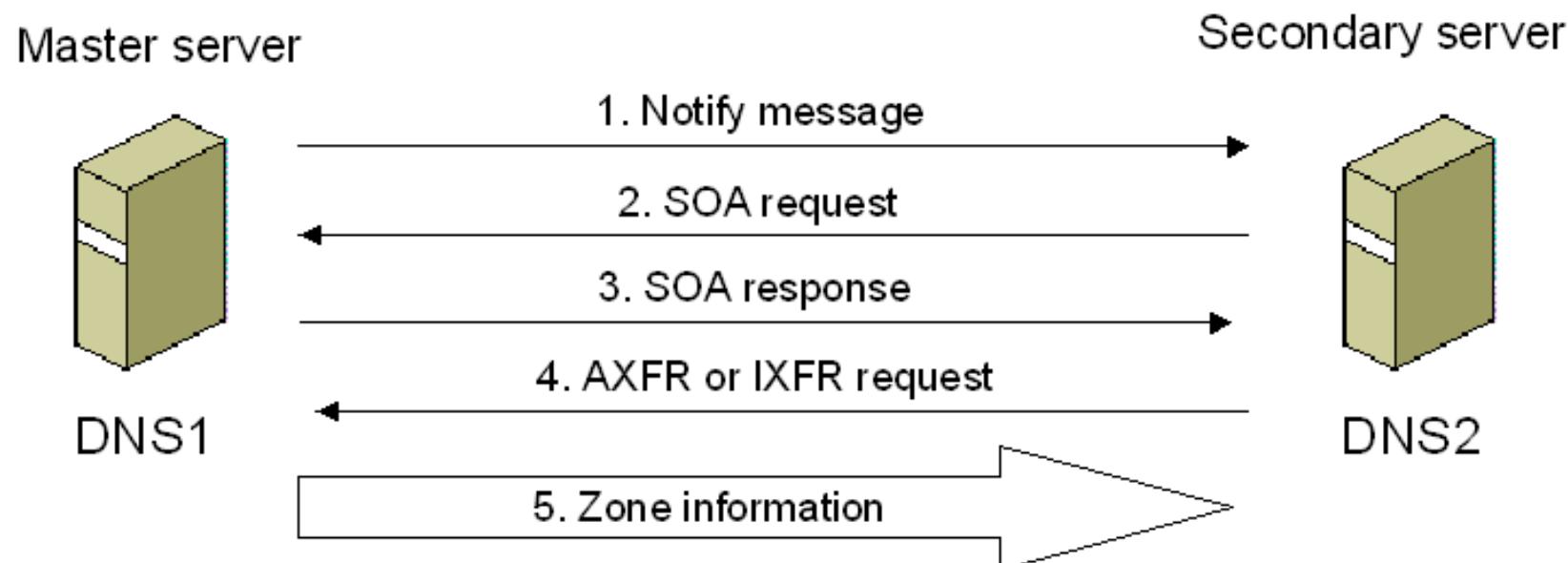

RFC 882 & RFC 883 both updated by RFC 973 in 1986

Obsoleted by two RFCs in 1987

- RFC 1034 – Describes the data structure and exchange of data
- RFC 1035 – Describes record and infrastructure format

Distributed database

Main components

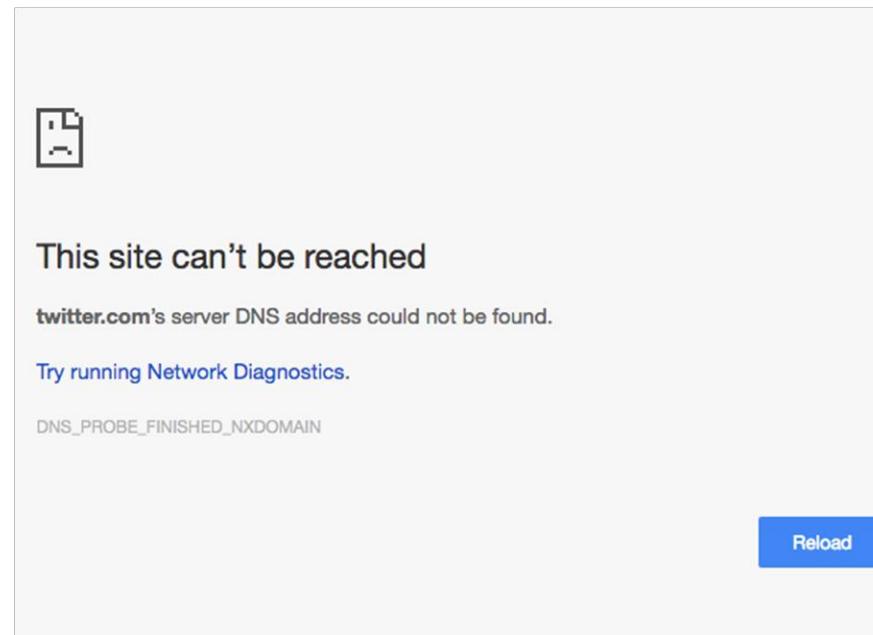

- Namespace
- Resource Records (RRs)
- Resolvers
- Name Servers

The conclusion in this area was that the current "user@host" mailbox identifier should be extended to "user@host.domain" where "domain" could be a hierarchy of domains.

- J. Postel; Computer Mail Meeting Notes, [RFC 805](#); 8 Feb 1982.

Improved DNS by

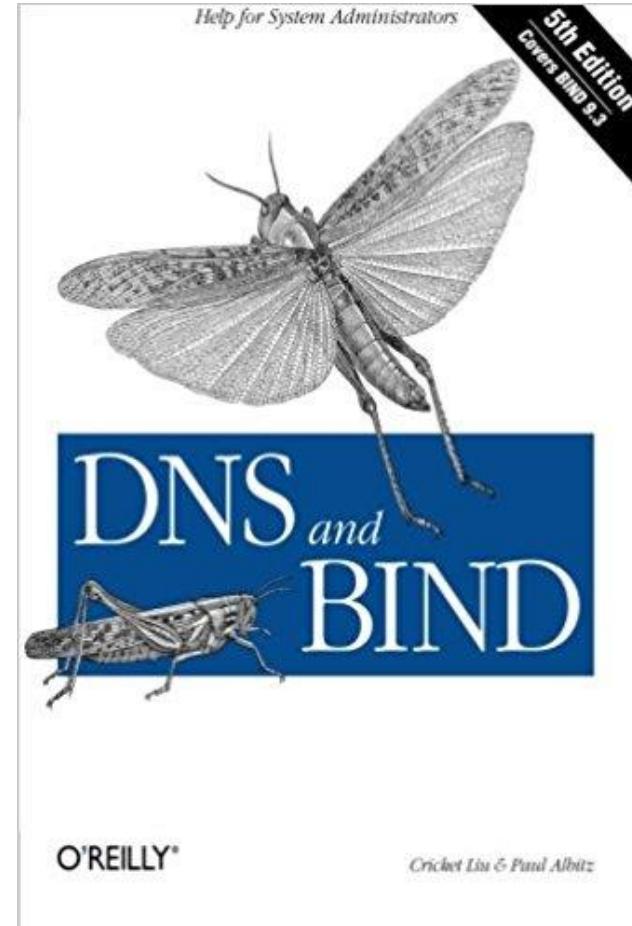
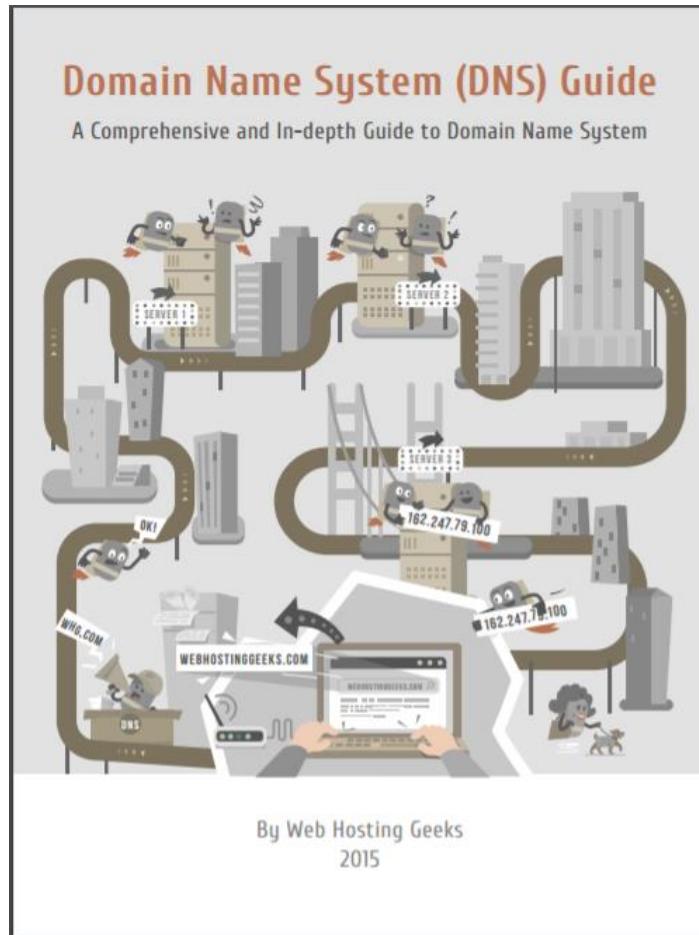
- Defining Master (Primary) / Slave (Secondary) relationship
- Adding Notify
- Adding IXFR (Incremental Zone Transfers)


Improved DNS by

- Implementing Dynamic Updates – RFC 2136
- Adding Extension Mechanisms for DNS (EDNS0) - RFC 2671 & RFC 6891

Improved DNS by

- Adding clarifications - RFC 2181
- Implementing provisions for negative responses - RFC 2308

Improved DNS by

- Implementing DNS Security (DNSSEC) - RFC 2535 now RFC 6840
- Promoting the use of EDNS OPT Codes

Brief History of DNS

https://webhostinggeeks.com/guides/dns/DNS_221215.pdf

RFC 2671 proposed by Paul Vixie in 1999

Replaced by RFC 6891 in 2013

Overcomes 512 byte UDP packet size limit

Support required for certain modern DNS features

Defines transport standards

Defines option format & assignments

Long list of
RFCs and Drafts

- See <https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-11>

There are
approximately
17 codes in use

- 11 RFCs
- 3 Drafts

65,535 possible
code
assignments

- Future expansion
- Don't confuse w/ Opcode

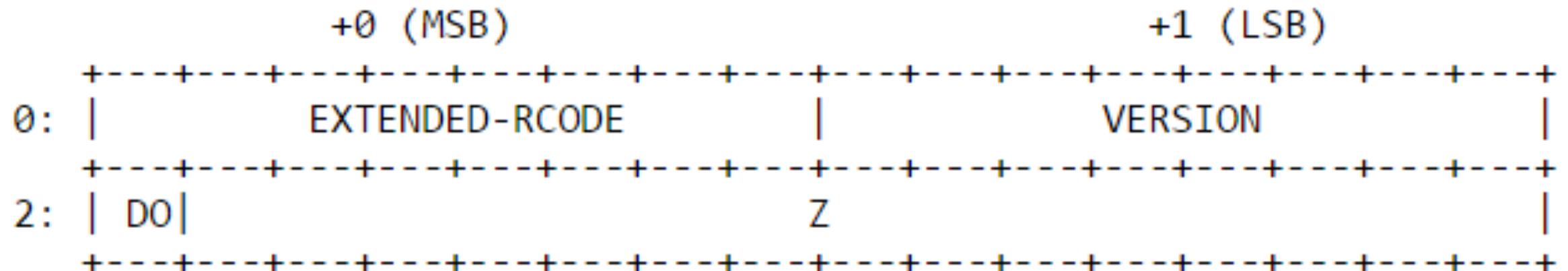
Resource Record Type 41

- Extends RCODE field from 4 to 12 bytes

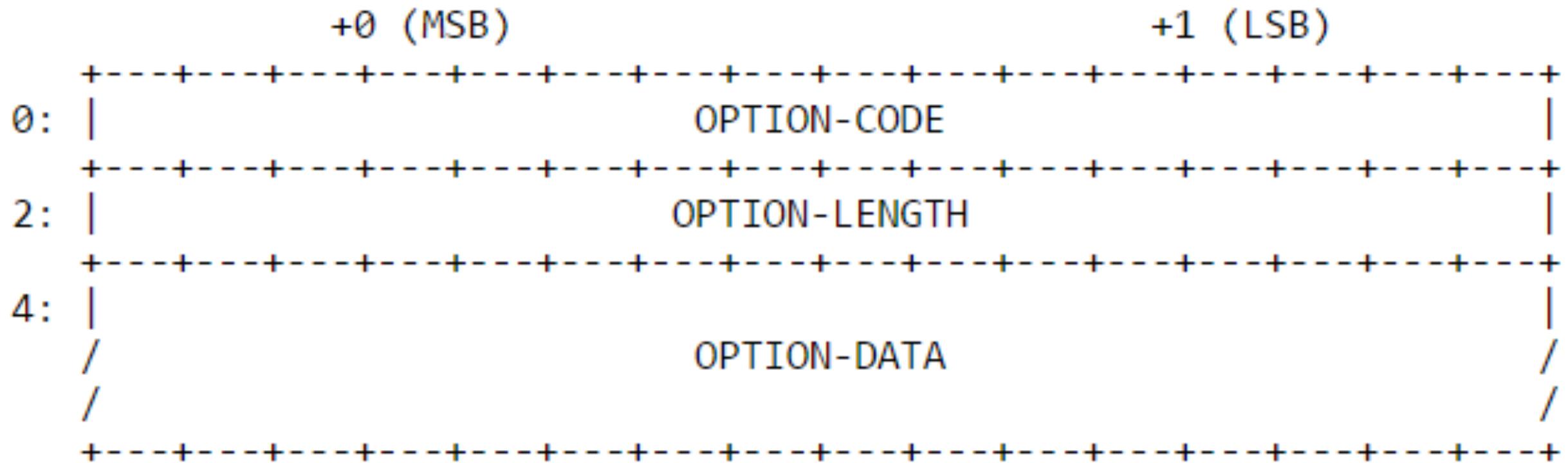
RFC 6891

- EDNS(0) Defines OPT Record

RFC 3225


- Defines support for DNSSEC

OPT Resource Record Format


Field Name	Field Type	Description
NAME	domain name	MUST be 0 (root domain)
TYPE	u_int16_t	OPT (41)
CLASS	u_int16_t	requestor's UDP payload size
TTL	u_int32_t	extended RCODE and flags
RDLEN	u_int16_t	length of all RDATA
RDATA	octet stream	{attribute,value} pairs

OPT RR Format

OPT Record TTL Field

OPT RR RDATA Structure

EDNS Option Codes

```
▼ Additional records
  ▼ <Root>: type OPT
    Name: <Root>
    Type: OPT (41)
    UDP payload size: 4096
    Higher bits in extended RCODE: 0x00
    EDNS0 version: 0
  ▼ Z: 0x0000
    0... .... .... .... = DO bit: Cannot handle DNSSEC security RRs
    .000 0000 0000 0000 = Reserved: 0x0000
    Data length: 12
  ▼ Option: CSUBNET - Client subnet
    Option Code: CSUBNET - Client subnet (8)
    Option Length: 8
    Option Data: 0001201832e1100e
    Family: IPv4 (1)
    Source Netmask: 32
    Scope Netmask: 24
    Client Subnet: 50.225.16.14
```

EDNS Option Codes

DNS EDNS0 Option Codes (OPT)

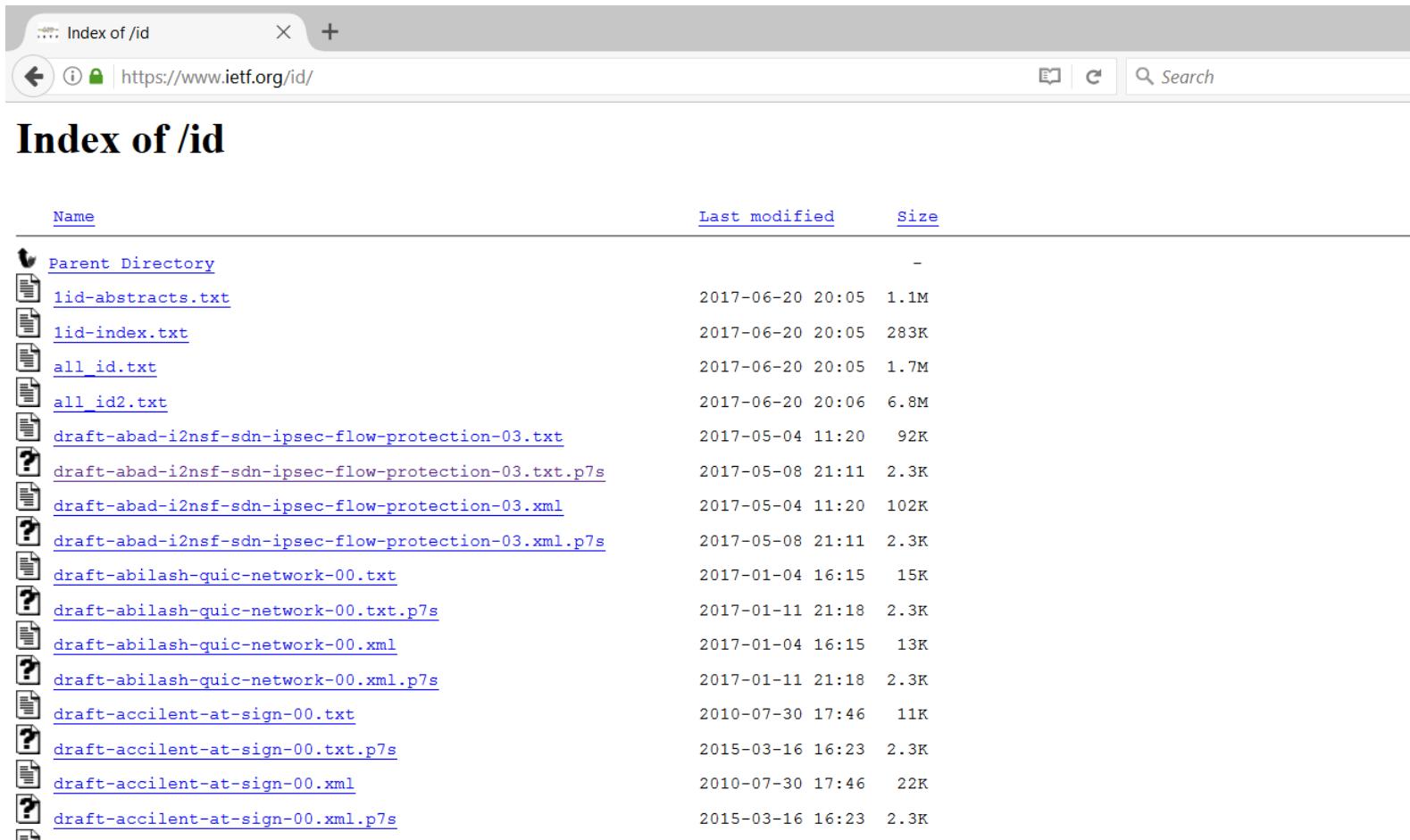
Registration Procedure(s)

Expert Review

Expert(s)

Olafur Gudmundsson

Reference[\[RFC6891\]](#)[\[RFC Errata 3604\]](#)**Note**


Registrations made by standards-track documents are listed as "Standard," and by non-standards-track documents as "Optional." Registrations for which there are no final specifications are listed as "On-Hold."

Available Formats

CSV

Value	Name	Status	Reference
0	Reserved		[RFC6891]
1	LLQ	On-hold	[http://files.dns-sd.org/draft-sekar-dns-llq.txt]
2	UL	On-hold	[http://files.dns-sd.org/draft-sekar-dns-ul.txt]
3	NSID	Standard	[RFC5001]
4	Reserved		[draft-cheshire-edns0-owner-option]
5	DAU	Standard	[RFC6975]
6	DHU	Standard	[RFC6975]
7	N3U	Standard	[RFC6975]
8	edns-client-subnet	Optional	[RFC7871]
9	EDNS EXPIRE	Optional	[RFC7314]
10	COOKIE	Standard	[RFC7873]
11	edns-tcp-keepalive	Standard	[RFC7828]
12	Padding	Standard	[RFC7830]
13	CHAIN	Standard	[RFC7901]
14	edns-key-tag	Optional	[RFC8145]
15-26945	Unassigned		
26946	DeviceID	Optional	[https://docs.umbrella.com/developer/networkdevices-api/identifying-dns-traffic2] [Brian_Hartvigsen]
26947-65000	Unassigned		
65001-65534	Reserved for Local/Experimental Use		[RFC6891]
65535	Reserved for future expansion		[RFC6891]

Additional Drafts

The screenshot shows a web browser window with the title "Index of /id". The address bar displays "https://www.ietf.org/id". The page content is a table listing files in the /id directory, including draft documents for various protocols like i2nsf, quic, and accidentl.

Name	Last modified	Size
Parent Directory		-
iid-abtracts.txt	2017-06-20 20:05	1.1M
iid-index.txt	2017-06-20 20:05	283K
all_id.txt	2017-06-20 20:05	1.7M
all_id2.txt	2017-06-20 20:06	6.8M
draft-abad-i2nsf-sdn-ipsec-flow-protection-03.txt	2017-05-04 11:20	92K
draft-abad-i2nsf-sdn-ipsec-flow-protection-03.txt.p7s	2017-05-08 21:11	2.3K
draft-abad-i2nsf-sdn-ipsec-flow-protection-03.xml	2017-05-04 11:20	102K
draft-abad-i2nsf-sdn-ipsec-flow-protection-03.xml.p7s	2017-05-08 21:11	2.3K
draft-abilash-quic-network-00.txt	2017-01-04 16:15	15K
draft-abilash-quic-network-00.txt.p7s	2017-01-11 21:18	2.3K
draft-abilash-quic-network-00.xml	2017-01-04 16:15	13K
draft-abilash-quic-network-00.xml.p7s	2017-01-11 21:18	2.3K
draft-accidentl-at-sign-00.txt	2010-07-30 17:46	11K
draft-accidentl-at-sign-00.txt.p7s	2015-03-16 16:23	2.3K
draft-accidentl-at-sign-00.xml	2010-07-30 17:46	22K
draft-accidentl-at-sign-00.xml.p7s	2015-03-16 16:23	2.3K

<https://www.ietf.org/id/>

Review of OPT Option Codes

Code	Name	Status	Description	Vendor
0		Reserved		
1	LLQ	Draft (expired)	DNS Long Lived Queries	Apple
2	UL	Draft (expired)	Dynamic DNS Update Leases	Apple
3	NSID	RFC 5001	DNS Name Server Identifier	ISC
4		Draft - Expired		
5	DAU	RFC 6975	DNSSEC	NIST
6	DHU	RFC 6975	DNSSEC	NIST
7	N3U	RFC 6975	DNSSEC	NIST
8	ECS	RFC 7871	EDNS Client Subnet	Google Akamai
9	EDNS EXP	RFC 7314	SOA Expire Identifier	ISC

Review of OPT Option Codes

Code	Name	Status	Description	Vendor
10	COOKIE	RFC 7873	DNS Cookies	ISC, Huawei
11	EDNS-TCP	RFC 7828	TCP Keepalive	Red Hat, Dyn, ISC
12	PADDING	RFC 7830	Random Padding	GmbH
13	CHAIN	RFC 7901	CHAIN Query Requests	Red Hat
14	EDNS KEY	RFC 8145	DNSSEC	Verisign, Google, ICANN
26946	DEVICEID	Experimental	Umbrella Device ID	Cisco

Proposed Drafts

UA	ISP LOC	Draft	ISP Location in DNS	CNNIC
UA	CLIENT ID	Draft	Client ID in Forwarded DNS	Charter, Akamai

OPT Option Codes 5,6 & 7

- All related to DNSSEC implementation
- Let's resolvers know which cryptographic algorithm was used to generate the digital signature
- Specifies a way for validating end-system resolvers to tell a server in a DNS query which digital signature and/or hash algorithms they support
- OPT 5 – DNSSEC Algorithm Understood (DAU)
- OPT 6 – DS Hash Understood (DHU)
- OPT 7 – NSEC3 Hash Understood (N3U)

OPT Option Code 8

- Client subnet in DNS queries
- EDNS Client Subnet (ECS)
- Let's all resolvers know the IPv4 WAN or IPv6 address subnet of the requester
- Developed to enable Content Delivery Networks via DNS
- We will look at bit more into the details shortly

OPT Option Code 26946

- DeviceID
- Used by Cisco Umbrella (Formerly OpenDNS)
- Sends the following data
 - Organization ID
 - Remote “Internal” IP
 - Remote IPv6
- Built into Umbrella Client or Umbrella enabled gateways
- <https://docs.umbrella.com/developer/networkdevices-api/identifying-dns-traffic2>

Draft ISP Location

- ISP Location in DNS Queries
- Proposed by China Internet Network Information Center (CNNIC)
- [draft-pan-dnsop-edns-isp-location-01](https://datatracker.ietf.org/doc/draft-pan-dnsop-edns-isp-location-01)
- Claims to be an improvement to privacy
- EIL data includes
 - Country
 - Area
 - ISP

Draft Client ID

- Client ID in Forwarded DNS Queries
- Proposed by Akamai
- draft-tale-dnsop-edns0-clientid-01
- Purpose is to provide more precise client identity
- Ex
 - Parental control
 - Domain access restriction
 - Compromise attribution

Initial Draft

- Draft-vandergaast-edns-client-subnet-00

Submitted January
27th, 2011

- C. Contavalli & W. van der Gaast – Google
- S. Leach – Verisign
- D. Rodden – Neustar

Revision 02
submitted on July 4th,
2013

- Note the date
- Ironic that it was changed on Independence Day

Resubmitted May
26th, 2015

- Draft-ietf-dnsop-edns-client-subnet-01
- Added - D. Lawrence – Akamai & W. Kumari – Google

Revision 02

- July 6th, 2015

Revision 03

- August 24th, 2015

Revision 04

- September 25th, 2015

Revision 05

- December 14th, 2015

Revision 06

- December 15th, 2015

Revision 07

- March 21st, 2016

Revision 08

- April 19th, 2016

RFC 7871

- May, 2016

Patent
submitted
April 30th,
2012

- Number WO2013164007 A1
- Jan Seedorf & Mayutan Arumaithurai - Nec Europe Ltd.

Still shows as
Application
so not
granted

- U.S. Patent number US20150134730 A1
- Interesting precedent

Client

- Checks cache
- Sends request to resolver

Resolver

- Checks cache or forwards to root
- If resolver supports ECS, sending IP is packaged into OPT RR Data

Authoritative

- Supplies answer
- If ECS aware, it sends back a geo-appropriate answer

Client

- Receives best route based upon geolocation
- All on same subnet get same answer

Option: CSUBNET - Client subnet

Option Code: CSUBNET - Client subnet (8)

Option Length: 8

Option Data: 00012016324c05f9

Family: IPv4 (1)

Source Netmask: 32

Scope Netmask: 22

Client Subnet: 50.76.5.249

Authoritative

- Google
- Akamai
- NS1
- OpenDNS
- UltraDNS
- PowerDNS
- BIND 9.11
- Amazon CloudFront

Recursive

- Unbound 1.6.2
- PowerDNS
- Google
- OpenDNS
- BIND 9.11
- Amazon CloudFront

A Faster Internet

The Global Internet Speedup

 Incapsula

 Tencent 腾讯

 DNSPOD

 amazon
web services

 OpenDNS

 edgecast

 CDNetworks
MISSION CRITICAL. CHALLENGING MARKETS.

 BITGRAVITY

 Google

 COMODO
Creating Trust Online™

 CLOUDFLARE™

 Tzo Ha
High Availability

Name Service Providers

- There is no up-to-date listing or registry showing name service provider support ECS compliant DNS records
- You are relegated reading provider tech material or asking
- A Faster Internet is not current

Recursive Providers

- Again no listing or registry.
- Rely upon material provided by the DNS provider to uncover support
- A Faster Internet is not current

```
dig @8.8.8.8  
+short -t txt edns-  
client-sub.net
```

- Targets the name server – 8.8.8.8
- Returns a JSON packet
- <https://www.ietf.org/mail-archive/web/dnsop/current/msg16055.html>

```
dig @x.x.x.x -t ns  
avaliddomain.com  
+subnet=y.y.y.y
```

- Targets x.x.x.x
- Supplies ECS data y.y.y.y
- Check OPT PSEUDOSECTION
 - CLIENT-SUBNET: y.y.y.y/M1/M2
 - M1 is Source Netmask
 - M2 is Scope Netmask

Tools For Evaluating Use


```
; <>> DiG 9.10.3-P2 <>> @8.8.8.8 -t txt edns-client-sub.net
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 31766
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;edns-client-sub.net.      IN      TXT

;; ANSWER SECTION:
edns-client-sub.net.    0      IN      TXT      "{\"ecs_payload\":{\"family\":\"1\",\"opcode\":0x08,\"cc\":\"US\",\"ip\":\"173.21.187.0\",\"mask\":\"24\",\"scope\":\"0\"},\"ecs\":True,\"ts\":1498933805.47,\"recursive\":{\"cc\":\"US\",\"srcip\":\"74.125.177.69\",\"sport\":44279}}"

;; Query time: 186 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Sat Jul 01 13:30:06 Central Daylight Time 2017
;; MSG SIZE  rcvd: 260
```

Tools For Evaluating Use


```
; <>> DiG 9.10.3-P2 <>> @8.8.8.8 google.com +subnet=8.16.116.10
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 62723
;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
; CLIENT-SUBNET: 8.16.116.10/32/32
;; QUESTION SECTION:
;google.com.          IN      A

;; ANSWER SECTION:
google.com.      299      IN      A      172.217.2.14
google.com.      299      IN      A      172.217.2.14
google.com.      299      IN      A      172.217.2.14

;; Query time: 29 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Thu May 11 22:10:32 Central Daylight Time 2017
;; MSG SIZE  rcvd: 99
```

Install Packetbeat
on your local DNS
resolvers

- Configure to capture DNS traffic
- Forward to Graylog instance Beats input

Build a Graylog
instance (or
download VM)

- Configure Beats input
- Validate data collection

Create a Stream

- Tag all DNS messages w/ data in packetbeat_dns_opt_subnet field
- Correlate to source & destination IPs

Tools For Evaluating Use

graylog

Search Streams Alerts Dashboards Sources System ▾

In 4 / Out 2 msg/s Help ▾ Administrator ▾

Search in the last 5 minutes Not updating ▾ Saved searches

source: [REDACTED] * AND NOT _missing_:packetbeat_dns_opt_subnet

Search result

Found 485 messages in 90 ms, searched in 1 index.
Results retrieved at 2017-05-16 12:35:10.

Add count to dashboard ▾

Save search criteria More actions ▾

Fields Decorators

Default All None Filter fields

- facility
- message
- name
- packetbeat_bytes_in
- packetbeat_bytes_out
- packetbeat_client_ip
- packetbeat_client_port
- packetbeat_direction

List fields of [current page](#) or all fields.

Histogram

Year, Quarter, Month, Week, Day, Hour, Minute

250
200
150
100
50
12:30 12:31 12:32 12:33 12:34 12:35

Messages

Previous 1 2 3 4 Next

Timestamp	packetbeat_dns_question_name	packetbeat_ip	packetbeat_request	packetbeat_response
2017-05-16 12:34:56.223	sb.l.google.com.	216.239.38.10		ID 15167; QR response; OPCODE QUERY; FLAGS aa; RCODE NOERROR; QUESTION class IN, type A, sb.l.google.com.; ANSWER 173.194.215.91; 173.194.215.93; 173.194.215.190; 173.194.215.136; ADDITIONAL
2017-05-16 12:34:56.172	sb.l.google.com.	216.239.36.10	ID 38100; QR query; OPCODE QUERY; FLAGS cd; RCODE NOERROR; QUESTION class IN, type A, sb.l.google.com.; ANSWER 173.194.215.136; 173.194.215.	ID 38100; QR response; OPCODE QUERY; FLAGS aa; RCODE NOERROR; QUESTION class IN, type A, sb.l.google.com.; ANSWER 173.194.215.136; 173.194.215.

Capture on local interface

- Run on AD DNS server or span port
- Or open TCP dump file from Linux host

Filter by
dns.opt.code ==
8

- Remember there are 65,535 possible OPTS
- See what else lurks in your DNS!

Note the data included in RRDATA

- Full IP of requester
- Subnet mask
- Scope mask (all IPs in this mask would get same response)

Tools For Evaluating Use

*PublicNet

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

dns.opt.code and dns.qry.name == "google.com"

No.	Time	Source	Destination	Protocol	Length	Info
93978	71.262849	[REDACTED]	50.206.254.92	DNS	141	Standard query response 0x69d6 A google.com A 216.58.217.14 A 216.58.217.14 A 216.58.217.14 OPT
1071...	82.827597	[REDACTED]	50.234.177.30	DNS	141	Standard query response 0xa88e A google.com A 172.217.8.14 A 172.217.8.14 A 172.217.8.14 OPT

Address: 216.58.217.14

- google.com: type A, class IN, addr 216.58.217.14
 - Name: google.com
 - Type: A (Host Address) (1)
 - Class: IN (0x0001)
 - Time to live: 0
 - Data length: 4
 - Address: 216.58.217.14
- google.com: type A, class IN, addr 216.58.217.14
 - Name: google.com
 - Type: A (Host Address) (1)
 - Class: IN (0x0001)
 - Time to live: 0
 - Data length: 4
 - Address: 216.58.217.14
- Additional records
 - <Root>: type OPT
 - Name: <Root>
 - Type: OPT (41)
 - UDP payload size: 4096
 - Higher bits in extended RCODE: 0x00
 - EDNS0 version: 0
 - Z: 0x0000
 - 0... = DO bit: Cannot handle DNSSEC security RRs
 - .000 0000 0000 0000 = Reserved: 0x0000
 - Data length: 12
 - Option: CSUBNET - Client subnet
 - Option Code: CSUBNET - Client subnet (8)
 - Option Length: 8
 - Option Data: 0001201832cefe5c
 - Family: IPv4 (1)
 - Source Netmask: 32
 - Scope Netmask: 24
 - Client Subnet: 50.206.254.92

0020 fe 5c 00 35 e6 ce 00 6b 0e 50 69 d6 81 80 00 01 .\5...k .Pi....
0030 00 03 00 00 01 06 67 6f 6f 67 6c 65 03 63 6fg oogle.co
0040 6d 00 00 01 00 01 c0 0c 00 01 00 01 00 00 00 00 m.....
0050 00 04 d8 3a d9 0e c0 0c 00 01 00 01 00 00 00 00
0060 00 04 d8 3a d9 0e c0 0c 00 01 00 01 00 00 00 00
0070 00 04 d8 3a d9 0e 00 00 29 10 00 00 00 00 00 00).....

This is a response to the DNS query in this frame (dns.response_to)

Packets: 113513 · Displayed: 2 (0.0%)

Profile: Default

<https://svn.nmap.org/nmap/scripts/dns-client-subnet-scan.nse>

Was developed before dig had +subnet= option added

May prove useful for isolated testing

Example Usage

```
nmap -sU -p 53 --script dns-client-subnet-scan --script-args \
'dns-client-subnet-scan.domain=www.example.com, \
dns-client-subnet-scan.address=192.168.0.1 \
[,dns-client-subnet-scan.nameserver=8.8.8.8] \
[,dns-client-subnet-scan.mask=24]' <target>
nmap --script dns-client-subnet-scan --script-args \
'dns-client-subnet-scan.domain=www.example.com, \
dns-client-subnet-scan.address=192.168.0.1 \
dns-client-subnet-scan.nameserver=8.8.8.8, \
[,dns-client-subnet-scan.mask=24]'
```

- Download Alexa Top 1 Million sites -
<http://s3.amazonaws.com/alexa-static/top-1m.csv.zip>
- Get 2nd column containing domain names to a new file
- Run dig to get the nameservers for each domain to a new file
- Sort that file and remove duplicates
- Use Python script to query each nameserver & supply ECS data
- Parse the options returned and record any that return ClientSubnetOption (or any other option)

DNS Packages Supporting EDNS OPT

- .NET
 - ARSoft.Tools.Net
 - Did not find others that supported OPT record manipulation
- Python
 - Dnspython (Nomium project)
 - Twisted Matrix (limited but growing support)
 - Getdns-python-bindings
 - Pydig
- PHP
 - NET_DNS2

- **Scapy**
 - Has some DNS functionality for manipulating OPT RR data
 - Only DNSSEC related info (RFC 2671)
 - None for working with Option Codes

Privacy & Security Implications

Leaks IP information

To every DNS server touched

First server may not honor subnet restriction

If /32 then all DNS can be attributed to source IP

Leaks other data

Many OPTs are proprietary w/ no insight into data sent

Could be MAC addresses, credentials, etc.

Anyone in path could capture that data

No disclosure

Use not well documented or advertised

Implementers can track data w/o your knowledge

You have no easy means of opting out

Can return data to client

From any DNS server touched my request

Data returned might have unexpected impact

Malware could use this for C&C traffic

Data shared can be manipulated

Ex. Using dig, subnet can easily be spoofed

Could lead to erroneous attribution

Particularly dangerous if law enforcement is involved

Third party data recipients

Can buy info regarding your DNS habits

Competitors and unethical hackers can as well

Privacy as it relates to DNS is dead w/o extra measures

Example Correct Configuration in Unbound

```
# whitespace is not necessary, but looks cleaner.
# EDNS 0 Configuration parameters
# Send client source address to this authority. Append /num to indicate a
# classless delegation netblock, for example like 10.2.3.4/24 or
# 2001::11/64. Can be given multiple times. Authorities not listed will
# not receive edns-subnet information.
# Send to all
send-client-subnet: 0.0.0.0/0

# Specify positive integer smaller than 65536. Defaults to 8.
client-subnet-opcode: 8

# Specifies the maximum prefix length of the client source address we are
# willing to expose to third parties for IPv6. Defaults to 64.
max-client-subnet-ipv6: 64

# Specifies the maximum prefix length of the client source address we are
# willing to expose to third parties for IPv4. Defaults to 24.
max-client-subnet-ipv4: 24
```

Example Incorrect Configuration in Unbound

```
# whitespace is not necessary, but looks cleaner.
# EDNS 0 Configuration parameters
# Send client source address to this authority. Append /num to indicate a
# classless delegation netblock, for example like 10.2.3.4/24 or
# 2001::11/64. Can be given multiple times. Authorities not listed will
# not receive edns-subnet information.
# Send to all
send-client-subnet: 0.0.0.0/0

# Specify positive integer smaller than 65536. Defaults to 8.
client-subnet-opcode: 8

# Specifies the maximum prefix length of the client source address we are
# willing to expose to third parties for IPv6. Defaults to 64.
max-client-subnet-ipv6: 128

# Specifies the maximum prefix length of the client source address we are
# willing to expose to third parties for IPv4. Defaults to 24.
max-client-subnet-ipv4: 32
```

Defensive Options

- Know what's normal
- Understand IPv6 vs IPv4
- Route ALL DNS to knowns recursive resolvers that do not pass EDNS OPT data or pass fake data
- Lock out non validated DNS at edge
- Disable EDNS(0) all together (not cool)
- Monitor DNS using Packetbeat / Graylog & full capture if needed (Bro, Security Onion, etc.)
- Create IPS rules as needed
- Enforce DNSSEC (Stuff will break!)

Offensive Options

- Create noise – generate scripted DNS w/ forged OPT data to confuse the upstream collectors
- Use full VPN tunnel to route ALL traffic through “safe” exit point
- Tor past that safe end point
- Account for IPv6 traffic as well
- Disable IPv6 temporarily
- Use TorGhost (Only works with IPv4)
- Test w/ Wireshark or TCPDump

OPT data have several useful purposes

- Allow CDN via DNS
- Enables DNSSEC
- Enables multi-tenant cache servers to cache data for differing end points
- DNS responses can be altered quickly in case of traffic overload
- Signature of compromise can be attributed to IP or MAC

OPT data use have privacy concerns

- All servers in DNS path if EDNS capable can track data
- No standard has been developed for opting out
- Privacy is compromised when EDNS OPT data is forwarded
- No mechanism to verify OPT data is accurate
- Data mining likely once providers fully implement

OPT data have potential for abuse

- Data could be easily spoofed
- 65,535 possible OPT choices
- Botnet C&C
- Data exfiltration

- Questions & Answers
- Contact Info
 - jnitterauer@appriver.com
 - @jnitterauer
 - <https://www.linkedin.com/in/jnitterauer>
 - 850-932-5338 ext. 6468