
The spear to break the security wall of S7CommPlus
Cheng Lei, Li Donghong, Ma Liang

NS-Focus

Abstract. Siemens PLCs was widely used in industrial control system(ICS).
The new version of Siemens PLCs like S7-1500 and S7-1200v4.0 used an
encrypted protocol names S7CommPlus to prevent replay attacks. In this
paper, based on reverse debugging techniques, we will demonstrate the
encryption algorithms of S7CommPlus and program a MFC to control the
Siemens PLC. Finally, some more security protective measures have been
proposed according to our research.

1. Introduction.
Industrial Control System involves national level critical infrastructure and

requires highly Security. In the past few years, attacks against industrial control

systems (ICS) have increased year over year. Stuxnet in 2010 exploited the
insecurity of the S7Comm protocol, the communication protocol used between

Siemens Simatic S7 PLCs to cause serious damage in nuclear power facilities.

After the exposure of Stuxnet, Siemens has implemented some security
reinforcements into the S7Comm protocol. The current S7CommPlus protocol

implementing encryption has been used in S7-1200 V4.0 and above, as well

as S7-1500, to prevent attackers from controlling and damaging the PLC
devices.

Is the current S7CommPlus a real high security protocol? This talk will

demonstrate a spear that can break the security wall of the S7CommPlus
protocol. First, we use software like Wireshark to analyze the communications

between the Siemens TIA Portal and PLC devices. Then, using reverse

debugging software like WinDbg and IDA we can break the encryption in the
S7CommPlus protocol. Finally, we write a MFC program which can control the

start and the stop of the PLC, as well as value changes of PLC’s digital and

analog inputs & outputs. This paper is based on the Siemens SIMATIC
S7-1200v4.1.

2. Related Work
At Black Hat USA 2011, Dillon Beresford demonstrated how to use

reconnaissance, fingerprinting, replay attacks, authentication bypass methods,

and remote exploitation to attack a Siemens Simatic S7-300 PLCs. These

PLCs use S7Comm protocol which does not contain any security protection.
At Black Hat USA 2015, Ralf Spenneberg et. al. demonstrated a worm lives

and runs on the Simatic S7-1200v3 PLCs. These PLCs use the early

S7CommPlus protocol with a simple mechanism to prevent replay attacks.

3. Siemens PLCs
Siemens PLCs are widely used in industrial control systems, like power plants,
fuel gas station, water and waste.

3.1 Programmable Logic Controllers
Programmable Logic Controllers (PLC) is responsible for process control in
industrial control system. A PLC contains a Central Processing Unit (CPU),

some digital/analog inputs and outputs modules, communication module and

some process modules like PID. Engineers programed user programs for
automated process control in PLC software and then downloaded the user

program to the PLC. The authorized engineers can also run or stop the PLCs

from PLC software.
3.2 Siemens PLCs protocols
Siemens PLCs use a private protocol to communicate. It is a binary protocol

utilizing both TPKT and ISO8073. Typically, both of these protocols use port
102/TCP.

The newest version of Wireshark(V2.1.1) supports Siemens PLC protocols

recording that will permit the analysis of message frames. Siemens PLC
protocol has 3 versions, S7Comm protocol, early S7CommPlus protocol and

new S7CommPlus protocol. S7Comm protocol is used in the communication

among S7-200, S7-300 and S7-400 PLCs. This protocol did not involve any
anti-replay attack mechanism and can be easily exploit by attackers. The early

S7CommPlus protocol used in the communication among S7-1200v3.0 is

more complicated than S7Comm protocol and use two-byte field called
session ID for anti-replay attack. However, the session ID is too easy to

calculate. The new S7CommPlus protocol used in the communication among

S7-1200v4.0 and S7-1500 has a complex encryption part to against replay
attack. In this paper, we will focus on the encryption part of S7CommPlus.

3.3 TIA Portal
TIA Portal is the configuration and programming software for Siemens PLCs.

Engineers rely on this software to design logic and program to control the
process attached to the PLC. The software offers the programmer the ability to

configure hardware parameters, such as Profinet parameters, communication

type, diagnostics. Authorized engineers can also run or stop the PLCs, monitor
and modify the input/output values.

F

igure 3.1 TIA Portal CPU STOP

F

igure 3.2 TIA Portal value monitor and modify

4. Replay Attacks
Replay attacks have been widely used in PLC attacks. We build up a small net

environment with a TIA Portal PC, a PLC and a hub. First, click the Stop PLC
button in TIA Portal to stop the PLC. Then launch the Wireshark or other

packet capturing tool to capture the packets between PC and PLC. Once the

PLC has stopped, stop capturing the packets. Use the packets we have
already obtained and send these packets back to any PLC in sequence, the

PLC could be controlled with these packets.

It is also possible for attackers to run PLCs, monitor or modify the
analog/digital input/output values, download user program or system program,

monitor the diagnostics of PLC.

Figure 4.2 Stop PLC communication sequence
Figure4.1 shows the communication sequence packets when stopping the

PLC using Wireshark. We separated these packets into 4 parts, TCP

Connection packets, COTP Connection packets, S7CommPlus Connection
packets and S7CommPlus Function packets. Performance as TIA Portal, first

establish the TCP connection and COTP connection to the target PLC. Then,

send the two S7CommPlus connection packets. After the S7CommPlus
connection was established, the S7CommPlus function packets could be used

to control the target PLC, or read/write the PLC’s input/output values.

5. S7CommPlus Protocol
Siemens S7-1200v4.0 and S7-1500 use the new S7CommPlus protocol

including the S7CommPlus Connection packets and S7CommPlus Function
packets. Every packets used by S7CommPlus protocol has a similar structure.

Figure 5.1 First S7CommPlus Connection Request Packet
Figure 5.1 shows the first S7CommPlus Connection Packet. Byte 0x72

represents the start of the S7CommPlus packet. Then following the PDU Type

byte, 0x01 means this packet is a connection packet. The Data Length field
does not take into account the frame boundary. Following the Data Length is

the type of this packet, 0x31 means this packet is a request packet. The

Sub-type byte further specifies this packet. The sequence number is
incremented for each message. Additional data is transferred in separate

attribute blocks begin with the two bytes “0xa3, 0x8x”. Frame Boundary is used

as the end of S7CommPlus packet.

Figure 5.2 First S7CommPlus Connection Response Packet
Figure 5.2 shows the first S7CommPlus Connection response packet. Type

byte 0x32 means this packet is a response packet. The 17th and 18th bytes

presents the Object ID. The 17th byte is constant with the value of 0x87 and the

18th byte is a random byte ranges from 0x06 to 0x7f generated by the PLC.

The 76th to 95th bytes presents the value array. This value array is a random
array generated by the PLC.

Figure 5.3 Second S7CommPlus Connection Request Packet

Figure 5.3 shows the second S7CommPlus Connection packet. The 16th and

17th, 21th and 22th bytes is called Session ID. The 16th and 21th byte is constant

with the value of 0x03. The 17th and 22th byte is calculated by TIA Portal with
the following formula:

Session ID = Object ID +0x80

In the second S7CommPlus Connection packet, there are two variable array,
we called them Connection Encryption arrays. These two arrays are calculated

by TIA Portal and we will talk this in the next chapter.

Figure 5.4 S7CommPlus Function Request Packet

Figure 5.4 shows a S7CommPlus Connection packet. From the 5th to 37th
bytes, is the encryption array. The 5th byte represented the Encryption length

and the rest represented the Encryption Part which is calculated by TIA Portal.

This Encryption Part will be talked in the next chapter.

6. Fun with the Encryption
In chapter 5, we found two encryptions in the S7CommPlus protocol packets,
one in the second connection packet and the other in function packets. Using

reverse debugging techniques, we found these encryption is calculated by TIA

Portal through a file named OMSp_core_managed.dll. In this .dll file, TIA Portal
generated the encryption parts using private algorithms.

6.1 Connection packet encryption
The Connection Encryption arrays in the Second connection packet send by

TIA Portal are two 16 bytes’ arrays. These two arrays are both calculated by

OMSp_core_managed.dll.
In the first connection response packet, we have already known a random

value array generated by the PLC with the length of 20. Using Windbgv6.1.12,

we can find this value array is the input parameter for the first encryption of
connection packet encryption. Figure 6.1 shows a first connection response

packet send by the PLC. The Value Array is “0xc2, 0x11, 0x70, 0xdf, 0xd4,

0x03, 0x6c, 0xf1, 0x52, 0x9f, 0x47, 0x90, 0x1c, 0xd0, 0xca, 0xac, 0x63, 0x7f,
0xd5”. Figure6.2 shows a debugging procedure, we found that the eax+244 is

“0x70, 0xdf, 0xd4, 0x03, 0x6c, 0xf1, 0x52, 0x9f, 0x47, 0x90, 0x1c, 0xd0, 0xca,

0xac, 0x63”. Compare to the first connection response packet, we found these
arrays has the same value in the Value Array’s 3rd to 17th bytes.

Figure 6.1 First S7CommPlus Connection Response Packet with Value Array

Figure 6.2 First encryption part in the second S7CommPlus Connection packet

With the value array as input, TIA Portal used a XOR (we call this Encryption1)
to generated the first encryption part in the second S7CommPlus Connection

packet:

Value Array + Encryption1 = Connection Encryption Part 1
Using the Connection Encryption Part 1 as input, TIA Portal continue its private

algorithm which is more complex than a XOR(we call this Encryption2) to

calculated the second encryption part in the second S7CommPlus Connection
packet:

Connection Encryption Part 1 + Encryption2 = Connection Encryption Part 2

Figure6.3 shows the result of Connection Encryption Part 1 and Connection

Encryption Part 2 from the Windbg and the second S7CommPlus Connection

packet.

Figure 6.3 Encryption part in the second S7CommPlus Connection packet

6.2 Function packet encryption
Each function packet send by the TIA Portal has a 32 bytes’ array called
Encryption Part. This array is calculated by OMSp_core_managed.dll.

Using Windbg, we found an array with Session ID in it, is the input parameter

of Function packet encryption. Except the Session ID, the other value is
constant, as Figure 6.4 shows.

Figure 6.4 Input parameter for S7CommPlus Function packet encryption
TIA Portal used a complex algorithm (we call this Encryption3) to generated

the Encryption Part of S7CommPlus Function packet:

Constant Array (with Session ID) + Encryption3 = Function Encryption Part

Figure 6.5 Function Encryption part in S7CommPlus Function packet
Figure 6.5 shows the result of Function Encryption Part from the Windbg and

the S7CommPlus Function packet.

6.3 S7CommPlus Communication
Based on the research of S7CommPlus protocol encryptions above, we can

get the S7CommPlus protocol communication sequence shown in figure 6.6.
To establish a connection between the TIA Portal and PLC, the three-way

handshake TCP connection has been used first. After the COTP connection

(CR & CC), TIA Portal will send an S7CommPlus Connection request. The first

S7CommPlus Connection Response packet include an Object ID and a Value

Array which is generated by the PLC. When receiving the Object ID and the
Value Array, the Session ID and Key Block will be calculated by TIA Portal.

Then, the second S7CommPlus Connection request packet including Session

ID and Key Block will send to the PLC. If the Session ID and Key Block is
correct, after the verify of PLC, a response packet will be send back to finish

the S7CommPlus connection. Each S7CommPlus Function Request packet

include an integrity part. The integrity part is calculated by TIA Portal using the
Session ID and a fixed Field Value as its input parameter. When the PLC

receives the S7CommPlus Function Request packet, the integrity part will be

verified. The S7CommPlus Function Response packet could be send only
when the verify was correct.

Figure 6.6 S7CommPlus protocol communication sequence with encryptions

7. Protections

7.1 Code level
Use code confusion techniques and anti-Debug techniques for the key DLL

files like OMSp_core_managed.dll. Siemens didn’t do any code protection to

the key DLL files. Therefore, it is very easy for attackers to debug and then find

the encryption algorithm.
7.2 Design level
In the new S7CommPlus protocol, some complex encryption algorithm has

taken by Siemens to against the replay attack. However, the input parameter

and the encryption algorithm are not variable. We recommended to use a
private key as an input parameter for encryption algorithm in the

communication between Siemens software and PLCs.
7.3 Protocol level
Encrypt the whole packets instead of the key byte encryption.

8. Conclusion
In this paper, we found that the secure Siemens protocol still has the risk of

being exploited. Using reverse debugging techniques, the encryption algorithm

of TIA Portal for anti-replay attack can be break. Then, using replay attack, the
PLC can be controlled. According to our research, some protections were

proposed in code level, design level and protocol level.

REFERENCES
[1] Ralf Spenneberg, Maik Brüggemann, Hendrik Schwartke

PLC-Blaster: A Worm Living Solely in the PLC. Black Hat 2016 USA
[2] Dillon Beresford. Exploiting Siemens Simatic S7 PLCs. Black Hat 2011

USA

[3] Thomas_v2. S7comm Wireshark dissector plugin.
http://sourceforge.net/ projects/s7commwireshark/files/.

